FIVE-COORDINATION IN IRON(II); COBALT(II) AND NICKEL(II) COMPLEXES

R. MORASSI, I. BERTINI and L. SACCONI*

Istituto di Chimica Generale e Inorganica, Università di Firenze, Laboratorio CNR, 39 Via J. Nardi, 50132 Florence (Italy)

(Received February 5th, 1973)

CONTENTS

A.	Intro	luction														,				347
	(i)	Geometry of five-coord																		
	(ii)	Spin-state of five-coord																		
B.	Incide	nce of five-coordinate i	ron(11),	, co	balt	(11)	an	d n	icke	:](I)	() c	omi	olex	es			_		350
	(i)	Monodentate ligands																		
	(ii)	Bidentate ligands																		
	(iii)	Tridentate ligands .																		
	(iv)	Tetradentate ligands																		
	(y)	Pentadentate ligands																		
	(vi)	Spin-isomeric complex																		
C.	Recen	it advances in specifosco	opy:	and	l m	agne	e tisi	m o	f ជ	vc-c	:001	rdir	ate	nic	kel(11)	and	ι		
		(II) complexes																		382
	(i)	High-spin nickel(II) co																		
	(ii)	High-spin nickel(II) co																		
	(iii)	High-spin nickel(II) co																		
	(iv)	High-spin cobalt(II) co																		
	(v)	High-spin cobalt(II) co																		
Refere	• •		_																	

ABBREVIATIONS**

В	monodentate	ligand
---	-------------	--------

- L organic ligand
- R alkyl or atyl group
- X coordinating anion (halide or pseudohalide unless otherwise specified)
- Y counterion
- Z substituent on aromatic ring

^{*} Author to whom correspondence should be addressed.

^{**} Roman numerals in parentheses refer to the formulae shown in the text.

abMe₂ 2,2'-ois(NN-dimethylamino)azobenzene
AP diphenyl(o-diphenylarsinophenyl)phosphine

AsNAs bis(2-diphenylarsinoethyl)amine
AsSAs bis(2-diphenylarsinoethyl)sulphide

ASTP tris(o-diphenylphosphinophenyl)arsine (LX)

atse acetonethiosemicarbazone

baphenMe₂ N-(2'-N",N"-dimethylaminophenyl)-2-N',N'-dimethylaminobenzylideneimine

bdhe N.N-bis(2-diethylaminoethyl)-2-hydroxyethylamine (XCII)

bdmp 1,3-bis(dimethylphosphino)propane (XII)

BDPi 2,3-butandionebis(2-diphenylphosphinoethyl)imine (LXXI)
bphen N_rN'-tetramethylenebis(5-chloro-2-hydroxybenzopheniminate)

btpy 2,3-(dibenzothiazol-2-yl)pyridine bza-R benzoylacetone aryliminate catec o-dihydroxobenzene

CR 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1] heptadeca-1(17),2,11,13,15-

pentaene (LXXIV)

CRH 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1] heptadeca-1(17),13,15-triene (LXXV)

1,7-CT 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-1(14),7-diene 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-1(14)3,7,10-tetraene

dabco[†]
1,4-diazabicyclo[2.2.2] octonium
dacoDA
1,5-diazacyclooctane N,N'-diacetate (XCIV)
DAP
bis(3-dimethylarsinopropyl)phenylphosphine
DAP-R₂
2,6-diacetylpyridinebis(alkylimine) (LIII)
das
o-phenylenebis(dimethylarsine) (XVII)
ddc
dimethyldithjocarbamate (XXIV)

ddta 1,11-bis(dimethylamino)-3,9-dithia-6-azaundecane DENB₂ bis[2-(Z-benzylideneimino)ethyl] amine (XLIII)

DMMP dimethyl methylphosphonate

dmp 2,9-dimethyl-1,10-phenanthroline (XXXI)

DMS 2,2'-dimercaptodiethylsulphide (XXXVIII)

dpb 1,4-bis(diphenylphosphino)butane

dpe 1,2-bis(diphenylphosphino)ethane (XV)

dpe 1,2-bis(diphenylphosphino)ethane (XV)
DPEA bis[2-(2'-pyridyl)ethyl] amine (LV)
DPES bis[2-(2'-pyridyl)ethyl] sulphide (LVI)

DPNB₂ bis[2-(Z-benzylideneimino)propyl] amine (XLIV)

dpp 1,3-bis(diphenylphosphino)propane
DSP bis(o-methylthiophenyl)phenylphosphine

dthb dithiobenzoate (XXII)
dthpa dithiophenylacetate (XXIII)

edas cis-1,2-bis(dimethylarsino)ethylene (XVIII)

EPNO 4-ethoxypyridine N-oxide (VIII)

Et4dien bis(2-diethylaminoethyl)amine (XLII)

Etphos 5-ethyl-5H-dibenzophosphole (VII)

Et6tren tris(2-diethylaminoethyl)amine (LXXIX)

fdma ferrocene-1,1'-bis(dimethylarsine) (XX)

fdpa ferrocene-1,1'-bis(diphenylarsine) (XIX)

H-nnpO N-[2-(diphenylphosphine-oxide)ethyl] N N-diethylethylenediamine FTP bis[2-(diphenylphosphino)-3,4,5,6-tetrafluorophenyl] phenylphosphine

HPPH 1,2-bis(phenylphosphino)ethane (XIII)

JAMP (N-isopropyl-aminomethyl)pyridine-2

LE 1,2-di-(2'-pyridyl)ethane (XXIX)

LS di-(2-pyridyl)disulphide (XXVIII)

lutox 2,5-lutidine N-oxide (X)

π-ma π-methallyl

MABen-NEt2 N-(2'-N'',N'''-diethylaminoethyl)-2-N'-methylaminobenzylideneimine (L)mbpt 2-(6-methyl-2-pyridyl)benzothiazole

Me-dabco[†] N-methyl-1,4-diazabicyclo[2,2,2] octonium Mc4daeo bis(2-dimethylaminoethyl)oxide (XLVII) Me4daes bis(2-dimethylaminoethyl)sulphide (XLVIII) Me₅ dien bis(2-dimethylaminoethyl)methylamine (XLI) Me₂dpma 6,6'-dimethyl-di-(2-pyridylmethyl)amine (LVII) MeDPT bis(3-aminopropyl)methylamine (XLIX)

Mephos 5-methyl-5H-dibenzophosphole (VI) mepic 6-methyl-2-aminomethylpyridine

Me2 tpma 2-pyridylmethyl-di-(6-methyl-2-pyridylmethyl)amine (LXXXII)

tri-(6-methyl-2-pyridylmethyl)amine (LXXXIII) Me₃ tpma Megtpt tris(3-dimethylaminopropyl)amine (LXXXI) Mestren tris(2-dimethylaminocthyl)amine (LXXVIII)

MOBen-NR2 N-(2'-N'N'-dialkylaminoethyl)-2-methoxybenzylideneimine (LII) N-(3'-N',N'-dimethylaminopropy!)-2-methoxybenzylidencimineMOBin-NMe2 a-N-methyl-S-methyl-B-N-(6-methylpyrid-2-yl)methylendithiocarbazate mpde

mpdo I-(o-methoxyphenyl)-2,6-diazaoctane

2-methyl-8-{(6-methyl-2-pyridyl)methyleneaminol quinoline pqm $N-(2^{t}-N^{t},N^{t}-diethylaminoethyl)-2-methylthiobenzylideneimine (L1)$ MSBen-NEt2

I,8-naphthalenebis(dimethylarsine) (XI) nas tris(2-diphenylarsinoethyl)amine NAs₃

N₃As NN-bis(2-diethylaminoethyl)-2'-diphenylarsinoethylamine (LXXXV) N-(3'-diphenylarsinopropyl)-2-methylaminobenzylideneimine **NNAs**

N-(3'-diphenylphosphinopropyl)-2-methylaminobenzylideneimine tris(2-methoxyethyl)amine (XC) N-O₃

N.N-bis(2-diethylaminoethyl)-2'-methoxyethylamine (LXXXVI) N_3O N_2O_2 N.N-bis(2-methoxyethyl)-2'-diethylaminoethylamine (LXXXVIII)

N.N-bis(2-diphenylarsinoethyl)-2'-methoxyethylamine NOAs₂

NOP, N.N-bis(2-diphenylphosphinoethyl)-2'-methoxyethylamine (LXV)

N2 OP N-(2-diphenylphosphinoethyl)-N-(2-methoxyethyl)-N', N'-diethylethylenediamine

(LXVI)

 NP_3 tris(2-diphenylphosphinoethyl)amine (LVIII)

N,N-bis(2-diethylaminoethyl)-2'-diphenylphosphinoethylamine (LXXXIV) N_3P N_2P_2 N.N-bis(2-diphenylphosphinoethyl)-2 diethylaminoethylamine (LIX) N,N-bis(2-methylthioethyl)-2'-diethylaminoethylamine (LXXXIX) N_2S_2 N.N-bis(2-diethylaminoethyl)-2'-methylthioethylamine (LXXXVII) N_3S

NSN 3-amino-1-(8'-quinoly1)-1-thiapropane

N-(2-diphenylphosphinoethyl)-N-(2-methylthioethyl)-N', N'-diethylethylenediamine N₂SP

NNP

NS3-R tris(2-alkylthioethyl)amine (XCI)

ONAs N-(3'-diphenylarsinopropyl)-2-methoxybenzylideneimine ONP N-(3'-diphenylphosphinopropyl)-2-methoxybenzylideneimine

ONSMe N-(2-methylthioethyl)salicylaldiminate (XL) N-(2'-N',N'-dialkylaminoethyl)pyridinaldimine paen R2 **4PAP** 2-(diphenylphosphinoamino)-4-methylpyridine N-(2'-N',N')-dimethylaminophenyl)pyridinaldimine paphenMe₂

pyridine-2-aldehyde-2-pyridylhydrazone paphy 2-phenyl-isophosphindoline (III) phpin PhPMP 2-(diphenylphosphinomethyl)pyridine

2-picoline N-oxide (IX) picox

qiq piperidine

pmp 2,6-bis(diphenylphosphinomethyl)pyridine (CII) PN o-dimethylaminophenyl-diphenylphosphine (XXVII) PNNP N.N'-bis(2-diphenylphosphinoethyl)-N,N'-dimethylethylenediamine (LXX)

pnp 2,6-bis(2-diphenylphosphinoethyl)pyridine (CI)

polyphos 2,8,9-trioxa-1-phosphaadamantane

PSP bis(2-diphenylphosphinoethyl)sulphide (XXXII)

PSSP 1,3-bis(3-diphenylphosphinopropylthio)propane (LXIX)

PTAS tris(o-diphenylarsinophenyl)phosphine (LX)

py pyridine

pymp 2-(diphenylphosphinomethyl)-6-methylpyridine (XXX)

py tz 2,4-bis(2-pyridyl)thiazole

QAS tris(o-diphenylarsinophenyl)arsine (LXII)
Qas tris(o-dimethylarsinophenyl)arsine (LXIII)
qas tris(3-dimethylarsinopropyl)arsine (LXIV)

qo Z-2-nitrosophenoxide

QP tris(o-diphenylphosphinophenyl)phosphine (LXVIII)

qp tris(2-diphenylphosphinoethyl)phosphine

quin quinoline

R₂dtp 0,0'-dialkyldithiophosphate

R2dtpi diaryldithiophosphinate, dialkyldithiophosphinate

R-imz alkyl-imidazole, benzimidazole

R-nnp N-alkyl-N-(2-diphenylphosphinoethyl)-N',N'-dimethylethylenediamine (XLV, XLVI)

R-phenox 10-alkyl-10-phenoxaphosphine

R-PNP bis(2-diplienylphosphinoethyl)alkylamine (XXXIV)

saesac dithioacetylacetonate (XXV)

SALen N'N'-ethylenebis(solicytideneiminate) (LXXII)

SAL-NR N-alkyl-salicylideneimina(e (XXVI)

SALoph N,N'-bis(salicylidene)-o-phenylenediamine (CIII) SALphen-NR₂ N-(2-dialkylaminophenyl)salicylideneiminate

SAs₃ bis(o-diphenylarsinophenyl)-o-methylthiophenylarsine

SBTAS tris(o-diphenylarsinophenyl)stibine (LX)
sbtas tris(3-dimethylarsinopropyl)stibine (LXI)
SBTP tris(o-diphenylphosphinophenyl)stibine (LX)
SeP diphenyl(o-methylselenophenyl)phosphine

SNAs N-(3'-diphenylarsinopropyl)-2-methylthiobenzylideneimine
SNNMe 6-methylpyrid-2-yl-N-(2'-methylthiophenyl)methyleneimine
SNP N-(3'-diphenylphosphinopropyl)-2-methylthiobenzylideneimine
SNS N-(2-methylthiophenyl)-2'-methylthiophenylmethyleneimine

SP diphenyl(o-methylthiophenyl)phosphine sp ethyl(2-diethylphosphinoethyl)sulphide stars dimethyl(o-dimethylarsinophenyl)stibine

TAAB-LN tetrabenzo-[b,fj,n]-4,8,12,16,20-pentauza-17,23-dioxa-20-methyl-bicyclo[7.7.7] tri-

cosa-4,12-diene (XCVI)

TAAB-LS tetrabenzo[b.f.j,n]-4,8,12,16-tetrabenzo-17,23-dioxa-20-thia-bicyclo[7.7.7] tricosa-4,

12-dienc (XCVII)

TACD 1,4,7,10-tetrabenzyl-1,4,7,10-tetraazacyclododecane
TAP tris(3-dimethylarsinopropyl)phosphine (LXI)
TAS bis(3-dimethylarsinopropyl)methylarsine (XXXV)

TDEH₂ thiodiethanol

TDPME 1,1,1-tris(diphenylphosphinomethyl)ethane (XXXVI)
TDPMM tetrakis(diphenylphosphinomethyl)methane (XXXVII)

TEP 1,2-bis(diethylphosphino)ethane (XIV)

terpy 2,2',2"-terpyridyl (LIV)

tet N₂N'-bis(3-aminopropyl)piperazine (XCIII)

TIBP tri-isobutyl-phosphate

TTB-R-DPT bis[3-(2-mercaptobenzylideneimino)propyl] alkylamine (XCIX)

trans-2,4,4,10,12,12-hexamethyl-1,5,9,13-tetraazacyclohexadecane (LXXIII) tmac TMP trimethylphosphate $N_{*}N_{*}N_{*}V_{*}$ -tris[2-(2'-pyridyl)ethyl]ethylenediamine (C) tpen TPH bis(2-diphenylphosphinoethyl)phenylphosphine (XXXIII) tris(3-aminopropyl)amine (LXXX) tpt tren tris(2-aminoethyl)amine (LXXVII) TSP tris(o-mediy)thiophenyi)phosphine TSeP tris(o-methylselenophenyl)phosphine ttas bis(o-dimethylarsinophenyl)methylarsine (XXI) TTP 1,4,8,11-tetrathiacyclotetradecane (LXXVI) ŧu thiourea VPP. cis-1,2-bis(diphenylphosphino)ethylene (XVI) Z-SAL-DAES bis[2-Z-salicylideneimino)ethyl[sulphide (XCV) N,N'-ethylenebis(Z-salicylideneiminate) (LXXII) Z-SALen Z-SALen-NR₂ N-(2'-N',N'-dialkylaminoethyl)-Z-salicylideneiminate (XXXIX)Z-SAL-NR N-alkyt-Z-salicylideneiminate Z-SAL-R-DPT bis[3-(Z-salicylideneimino)propyl[alkylamine (XCVIII)

A. INTRODUCTION

Both the experimental and theoretical aspects of five-coordinate complexes of iron(II), cobalt(II) and nickel(II) have undergone rapid development in recent years and some hundreds of contributions have been published in this field. Some review articles have sought to organize and rationalize the available information, paying most attention to such particular aspects of this type of coordination as its associated spectroscopic ^{1-2a}, magnetic^{2a-5} and structural^{2a,6,7} properties.

The intent of this review is to collect together information on all the five-coordinate complexes of these metal ions thus far recognized, in order to ascertain the range (in terms of variety of metals and ligands) in which this type of coordination exists and to characterize the conditions and factors which determine whether a given ligand produces a five-coordinate complex. Particular attention will be paid to the spin-state of the complex, in the sense that high- and low-spin complexes have different stabilities, and different ranges of existence. Also, the spin-state is closely related to the properties of the donor groups and to the resulting geometry of the complex.

Data from polarized electronic spectra and magnetic anisotropy measurements form the basis for a more detailed discussion of the electronic structure of the complexes in the final section.

(i) Geometry of five-coordinate complexes

The highest symmetry that a five-coordinate complex can possess is D_{3h} , that of a trigonal bipyramid (TBP). A variable parameter in this structure is the ratio of axial to equatorial bond lengths. Next highest is the square pyramid (SP) with symmetry $C_{4\nu}$ which has an additional structural parameter, the angle between the axial and equatorial bonds, de-

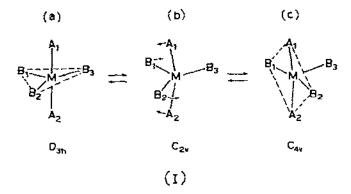


Fig.1. Geometrical distortion of five-coordinate complexes: (a) trigonal bipyramid (D_{3h} symmetry); (b) intermediate geometry ($C_{2\nu}$ symmetry); (c) square pyramid ($C_{4\nu}$ symmetry).

signated the apical angle^{8,9}. Both theoretical and experimental work indicate that a "standard" SP has an apical angle of ca. 100° (ref.5).

Usually the symmetry of this class of compounds is less high. A common distortion gives rise to a structure^{3,7} which is intermediate between the trigonal bipyramidal and that of an idealized right square pyramid (Fig.1).

This type of distortion will be called geometrical distortion (type I), in that it is the bond angles which are principally affected. Coordinative distortion can be distinguished when one bond becomes longer than usual; in such cases one can apply the concept of "semicoordination" (ref. 10). Two typical coordinative distortions are shown schematically in Fig. 2: apical elongation (type II) and tetrahedral distortion (type III).

Obviously the steric characteristics of the ligands and their denticity will have a profound influence on the resulting stereochemistry. While monodentate ligands can in principle par-

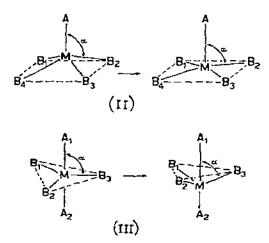


Fig. 2. Typical coordinative distortions of five-coordinate complexes: (II) apical elongation in square pyramidal complexes; (III) tetrahedral distortion in trigonal bipyramidal complexes.

ticipate in any geometry whatsoever, polydentate ligands are subject to chelate effects. Bidentate and linear open-chain or cyclic tetradentate ligands tend to form SP complexes. Tridentate ligands generally give geometrically distorted complexes (type I), while tripod-like tetradentate ligands are by their nature well adapted to form complexes of TBP geometry.

(ii) Spin-state of five-coordinate complexes

It is well known that five-coordinate complexes of iron(II), cobalt(II) and nickel(II) can be high- or the ownspin in both TBP and SP geometries. For clarity, the electronic configurations of each ion in fields of D_{3h} and $C_{4\nu}$ symmetry are shown in Fig.3.

It is clear that the strength of the ligand field, which determines the magnitude of the splitting, is important in determining spin-state. However, the nephelauxetic effect of the donor atoms is much more important since it can reduce the separation between the free ion terms by as much as 50%. As a result of this, the crossover point between high- and low-spin ground terms may occur at relatively small values of 10Dq. The nephelauxetic reduction is a function of the electronic delocalization on the ligand and the covalency of the metal-ligand bond, both properties related to the softness and π -bonding ability of the donor atoms. Thus, high-spin complexes are generally formed with hard donors (N, O, Cl, etc.) and low-spin complexes are formed with soft donors (P, As, I, etc.). A semi-empirical relationship has been found which relates the spin-state of five coordinate complexes of cobalt

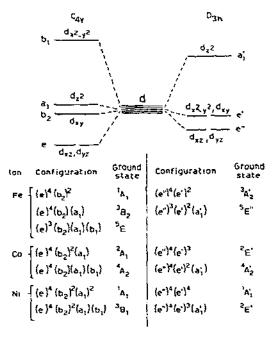


Fig.3. Splitting of 3d orbitals and electronic configurations for $Fe^{II}(d^6)$, $Co^{II}(d^7)$ and $Ni^{II}(d^8)$ in five-coordinate complexes with $C_{4\gamma}$ and D_{3h} symmetries.

(II) and nickel(II) with the "overall nucleophilicity" and "electronegativity" of the donor atoms 11.

Geometrical distortion of type I does not apparently influence the spin-state of cobalt (II) and nickel(II) complexes, but distortion involving bond length has a marked influence. Type II distortions generally favour the low-spin state, while distortions of type III, which are common among cobalt(II) complexes, favour the high-spin state⁵.

B. INCIDENCE OF FIVE-COORDINATE IRON(II), COBALT(II) AND NICKEL(II) COMPLEXES

In order to point out the range of existence and the factors determining the incidence of five-coordination, the complexes will be divided according to the denticity of the ligand and the spin-state. Some complexes showing spin-isomerism will be treated in a following section regardless of the denticity of the ligand. The characteristics of the known five-coordinate complexes of iron(H), cobalt(H) and nickel(H), are reported in Tables 1—6.

(i) Monodentate ligands

The occurrence of five-coordination with monodentate ligands is of particular interest in that it is the result of a fine balance between the steric interactions among the various ligands and the specific tendency of the metal ion to achieve five-coordination. The lack of stabilization due to chelate effects and of a rigid ligand skeleton make it more difficult to characterize the factors which determine the formation of five-coordinate complexes. With a proper choice of the neutral ligand L and of the anions X, five-coordinate (high-and low-spin) complexes with the following stoichiometries have been isolated or identified in solution: $ML_3 X_2$, $[ML_4 X]^+$, $[ML_5]^{2+}$, $[ML_4 L']^{2+}$ (where L and L' are different ligands), $[MX_5]^{3-}$ and $[M_2Cl_8]^{4-}$. A selection of examples is given in Table 1.

TABLE 1

Five-coordinate iron(II), cobalt(II) and nickel(II) complexes with monodentate ligands

Species ^q	Metal ion	Donos set	Physical state ^b and ref.	X-ray data ^c and ref.	Notes
(i) Low-spin complexes					
$M(PHPh_2)_3X_2$	Co	P_3X_2	c,s (12)	INT(13)	
2,3,-2	Ni	J .	c,s (14,15)	INT(13)	
$M(PMe_3)_3X_2$	Ni	P_3X_2	c,s (16-18)		
$M(PRR_2^7)_3(CN)_2$	Co	P ₃ C ₂	c,s (19)		R≠R'= Me, Et, Ph, OMe, OEt, OPh
	Ni		c,s (20-23)	INT(24)	
M(PPhEt ₂) ₃ (C≡C-Ph) ₂	Ni	P_3C_2	c (25)		_
M(PRR ₂) ₃ (NCS) ₂	Co	P ₃ N ₂	c,s (26-28)		R = R' = Me, Pr $R \neq R' = Et, Ph$

TABLE I (continued)

Species ^a	Metal ion	Donor set	Physical state b with ref.	X-ray data ^c with ref.	Notes
					
M(PPhMe ₂) ₃ X ₂ [M(P(OMe) ₃) ₅] 2+	Ni	P_3X_2	c,s (29)	TBP(30)	
	Ni	Ps	c,s (31)	mn= (0.0)	
[wi(bothhuos)2]	Ni	P _s	(32,33) عـ٥	TBP(33)	
$M(phpin)_3X_2$	Co	P_3X_2	c,s (34)		
M/Manhan V	Ni	n v	c,s (35)		
M(Mephos) ₃ X ₂	Co	P_3X_2	c,(s) (36,37)	DIT TUD/20 200	
M(Eanhan) V	Ni C-	n v	c,(s) (36,37)	INT,TBP(38,39)	
M(Etphos) ₃ X ₂	Co Ni	P_3X_2	c,(s) (36,37)	TDD/29 20)	
M(P = phenov \ Y -	Ni	D. V.	c,(s) (36,37)	TBP(38,39)	R = Me, Et
M(R-phenox) ₃ X ₂ M(PRR ₂) ₃ X ₂		P_3X_2	c (40) c,s (41,42,42a)		$R \neq R' = NMe_2, F$
$M(PHEt_2)_3X_2$	Co Ni	P ₃ X ₂			K ≠ K ~ Noic2, r
$[M(PHEt_2)_4X]^+$	Ni	P ₃ X ₂	c,s (43)		
$\{M(PPh(OEt)_2)_4X\}^+$		P ₄ X	c ₁ (s) (43)		
MODE COLVEY AS	Co	P ₄ X	c,s (44)		
$M(PPh(OEt)_2)_3(NCS)_2 = {M(CN)_5}^3$	Co Co	P ₃ N ₂	c,s (44) c,s (45-48)		
[ht(Cta)2]	Ni	C ₅	c,s (49+32)	INT and SP(53,54)	
$[M(PhNC)_5]^{2+}$	Co	Cs	(c) (54a,54b)	111 and 51(55,54)	
[14(1 m/c)2]		~5	(2) (3 14,5 (0)		
(ii) High-spin complexes					
$[M(Ph_2MeAsO)_4X]^+$	Fe	O ₅	c,s (55)	(X) (55)	$X = CiO_4, NO_3$
. –	Co	-	c,s (55,56)	SP(57)	
	Ni		c,s (55,56)	(X) (55)	
$[M(Ph_2MePO)_4X]^+$	Гe	O ₅	c,s (55)	(X) (55)	$X = CiO_4$, NO_3
	Co		c,s (55)	(X) (55)	
	Ni		c,s (55)	(X) (55)	
[M(Ph3AsO)4X] +	Fe	O ₅	c,s (55)		$X = C1O_4, BF_4,$
	Co		c,s (55)		RcO ₄
_	Ni		c,s (55, 58, 59)		
[M(Ph ₃ PO) ₄ X] ⁺	Fe	O ₅	c,s (55)		$X = ClO_4$, BF_4 , NCS, I
	Ço		c,s (55)		
	Ni		c,s (55,58-60)		
[M(Me ₃ PO) ₅] ²⁺	Co	O ₅	c (61)	(X) (61)	
	Ni		c (61)	(X) (61)	
$[M(Me_3AsO)_5]^{2+}$	Co	Os	c (61)	(X) (61)	
_	Ni		c,s (61)	SP(62)	
$[M(Me_3PO)_4ClO_4]^{\top}$	Fe	O ₅	c (61)		
$[M(Me_3AsO)_4ClO_4]^T$	Fe		c (61)		
7.4	Ni		c (61)		
$[M(EPNO)_5]^{2+}$	Co	O ₅	c,s (63)		
	Ni		c,s (63)		
M(EPNO)3(NO3)2	Co	Os	c (64)		
$[M(picox)_5]^{2+}$	Co	O ₅	c,s (65)	TBP(66)	
$[M(picox)_4]_{\overline{g}_+}^{2n+}$	Ni	_	c,s (67)		(Polymeric)
EM(dutox), E**	Co	05	s (68,69) ^d		
	Ni		c,s (67)		(Polymeric)
$[M(lutox)_4]_n^{2n+}$					
$[M(lutox)_4]_n^{2n+}$	Co	N2O2S	c (70)		Bridging NCS
		N ₂ O ₂ S O ₅ O ₅			

Species d	Metal ion	Donor set	Physical state b with ref.	X-ray data ^C with ref.	Notes
	Co		c (72)		-, .
	Ni		s (72)		
$[M(TIBP)_4(OH_2)]^{2+}$	Co	05	c,s (73)		
	Ni	•	c په (73)		
[M ₂ Cl ₈] ⁴⁻	Ni	Cl ₅	c (74)	SP(75)	
$\{MCl_4(R-OH)\}^{2-}$	Ni	OCI ₄	c (74)		R = Me, Et
${MCl_4(R-OH)}^2$ $M(Me-dabco^3)(B)X_3$	Fe	$N(B)X_3$	c (76)	(X) (76)	$B = H_2O$, NH_3
•	Co	N_2X_3	c (76)		
	Ni	$N(B)X_3$	c (76)	TBP(77)	
$[M(dabco^{\dagger})_2X_3]^{\dagger}$	Fe	N_2X_3	c (78)	· · · · · ·	X = CI, Br
	Ni	- •	c (78)		X = Ci. Br

^a The ligand notation is defined in the Abbreviations list.

b c denotes crystals, s solution; parentheses denote uncertain assignment or, for solutions, equilibria with other species.

d The formation of $[M(\text{lutox})_{\frac{1}{2}}]^{2+}$ species for M = Ni(II) has recently been reported ³²⁹.

(a) Low-spin complexes

Among the low-spin complexes, the most common stoichiometries are ML_3X_2 , $[ML_4X]^+$, $[ML_5]^{2+}$ and $[MX_5]^{3-}$. The ML_3X_2 complexes are derived from phosphorus-containing ligands (secondary or tertiary phosphines, phosphites, etc.). Since the occurrence of five-coordination is restricted to a narrow range where electronic and steric requirements of the ligands are properly balanced, phosphines and similar ligands are particularly suitable for the study of this phenomenon, because they can be synthesized with a wide range of steric and donor properties. Aromatic substituents decrease the donor power of the ligand but supposedly increase its π -backbonding capability. On the other hand aliphatic substituents have less effect on the π -backbonding capability, but increase the σ character of the coordination bonds and offer the best opportunity to vary the total bulkiness of the ligand. Quite bulky substituents favour the less strained planar or tetrahedral four-coordination. An example of such a balance is the observation that the ligand Et_2PhP (I) (refs. 19, 21) does not form ML_3X_2 complexes (X = halogen) but the ligands Me_2PhP (II) (refs. 29, 30) and phpin (III) (refs. 34, 35) do. Presumably the smaller size of Me_2PhP and the smaller steric require-

$$P - Ph$$
 CH_2
 $P - Ph$
 CH_2
 $P - Ph$

ments of phpin with respect to Et_2 PhP are determining factors. Similarly Ph_2 MeP (IV) and Ph_2 EtP (V) do not form ML_3 X_2 complexes (with $X = halogen)^{19,21,29}$ but the ligands

^c Symbols for complete X-ray structures: TBP denotes trigonal bipyramid, SP square pyramid and INT intermediate structure. Indirect structural evidence (e.g. isomorphism with compounds of known structure) is indicated by (X).

Mephos (VI) and Etphos (VII), owing to their smaller steric requirements and probably to the different donor properties of the sp^2 phosphorus atom, do form such five-coordinate complexes³⁶⁻³⁹. The OR substituents on the phosphorus donor atom (organic phosphites, phosphonites, etc.), although their role is not quite clear, particularly favour the formation of five-coordinate complexes, so that in some cases $[ML_5]^{2+}$ cationic complexes are also obtained³¹⁻³³.

Among the anions X, the CN⁻ ion is particularly liable to induce five-coordination. Frequently a ligand L does not give rise to five-coordinate complexes when X = halide, but does when X = CN⁻ (see Table 1). The capacity to stabilize five-coordinate complexes in general fellows the order CN⁻ \gg 1 -> Br⁻ > Cl⁻ > NO₂⁻ > NCS⁻ although the NCS⁻ ion has often been found to be effective in stabilizing low-spin five-coordinate cobalt(II) complexes^{19,26-28}. Such an order cannot be explained in terms of ligand field strength but could be related to the polarizability and/or nephelauxetic effects of the donor groups. The only anion which appears capable of forming five-coordinate complexes by itself with cobalt(II) and nickei(II) is the CN⁻ group: [Ni(CN)₅]³⁻ complexes are easily formed even in aqueous solutions⁴⁹⁻⁵¹ and can be isolated using either counteranions of suitable bulkiness^{53,54,79} or low-temperature techniques⁵²; anionic [Co(CN)₅]³⁻ species have been also identified in solution⁴⁵⁻⁴⁷ and recently isolated⁴⁸.

It should be mentioned at this point that all the five-coordinate species here discussed are subject, in solution, to dissociation equilibria. Typical equilibria are those shown by the ML_3X_2 species.

$$ML_{1}X_{2} \rightleftharpoons [ML_{1}X]^{+} + X^{-}$$
 $ML_{1}X_{2} \rightleftharpoons ML_{2}X_{2} + L$

This instability in solution suggests that the choice of the solvent and of the synthesis conditions (temperature, ligand excess, etc.) is always of prime importance, whilst lattice forces, which can be tentatively controlled only in the case of ionic species, also play an important role in the isolation of these five-coordinate complexes.

(b) High-spin complexes

Most of the high-spin complexes have been obtained with the oxo-derivatives of the same ligands which form low-spin complexes. Tertiary phosphine oxides and arsine oxides as well as organic phosphates, readily give rise to high-spin five-coordinate complexes. Because of its high electronegativity, small Dq and low nucleophilicity, the introduction of oxygen into the ligand as donor atom does not greatly affect the steric characteristics but does allow

for the formation of high-spin complexes. The presence of oxygen as donor atom is the main feature of the complexes of this type.

Some tertiary phosphine oxide and arsine oxide ligands capable of forming five-coordinate complexes are: Ph_2MePO (ref. 55), Ph_2MeAsO (refs. 55, 56), Ph_3PO (refs. 55, 58–60) and Ph_3AsO (refs. 55, 58, 59), which form $[ML_4X]^+$ complexes, where $X = ClO_4^-$, NO_3^- , BF_4^- , NCS^- or I^- ; also Me_3PO (ref. 61) and Me_3AsO (ref. 61), which can form either $[ML_4(ClO_4)]^+$ or $[ML_5]^{2+}$ complexes. The electronic properties of these ligands are presumably quite similar, whereas the steric requirements are expected to increase gradually on passing from the trimethyl to the triphenyl derivatives. The fact that all these ligands are able to form $[ML_4X]^+$ species can be accounted for by the particular geometry of the complexes, i.e. square pyramidal with the X atom in the apical position 57 , and by the distance between the organic moleties and the metal ion. As a consequence, the steric balance of the ligands is less critical than it is for the analogous low-spin complexes. The effect on the steric crowding around the metal ion produced by the introduction of an oxygen donor atom between the phosphine and the metal ion is illustrated by the fact that the phosphines give rise to complexes with 1:2 (or 1:3 in the case of Me_3P) metal-to-ligand ratios, whereas the corresponding phosphine oxides can be bound to the metal with ratios up to 1:5.

The occurrence of $[ML_5]^{2+}$ species with the least bulky trimethyl derivatives shows that the steric factors are important. The possibility of obtaining both $[ML_5]^{2+}$ and $[ML_4(ClO_4)]^+$ species with these ligands, and the similar properties of these two types of complexes, suggest that the ClO_4 and L groups are similar in many respects, as is confirmed by X-ray structures 57,62 . On the other hand, the $[ML_4X]^+$ complexes obtained with the most bulky triphenyl derivatives owe most of their stability to packing effects since, depending on the counteranion, other species may be formed. With BPh₄, for instance, only tetrahedral $[ML_4]^{2+}$ complexes are obtained 55 . The compounds $ML_4(ClO_4)_2$ and $ML_4(BF_4)_2$ have been isolated as both the tetrahedral $[ML_4]^{2+}$ and five-coordinate $[ML_4(ClO_4)]^+$ or $[ML_4(BF_4)]^+$ isomers: the interconversion between the five-coordinate and four-coordinate isomer can also be performed in the solid state by heating 59,60 .

With respect to their ability to give five-coordinate complexes, the phosphate, phosphonate and phosphinate ligands, which differ from the tertiary phosphine oxides in that one or more OR groups replace the R groups, are quite similar to the latter ligands. The effect of such a substitution is to decrease the donor power of the phosphoryl group, thus favouring an increase in the metal coordination number. In opposition to this, the bulkiness of the OR group tends to decrease the coordination number. The balance between these two factors leads to the formation of complexes with various coordination numbers, including the five-coordinate species $[ML_5]^{2+}$ and $[ML_4(OH_2)]^{2+}$ (refs. 71–73). These generally tend to increase their coordination number in solution by adding an extra ligand (ionic or neutral).

Although a large number of metal complexes with substituted pyridine N-oxides are known, only recently has the formation of five-coordinate complexes with such ligands been reported $^{63-70}$. From the point of view of the coordination properties, pyridine N-oxide type ligands are quite versatile, in that metal complexes with several stoichiometries

have been obtained depending on the anions, the reaction conditions and the type of metal ion. Although there is no apparent relationship between the nature of the substituent on the pyridine ring and the type of complex obtained, the substitution position does affect the coordination number: 3- and 4-substituted ligands tend to attain six-coordination whereas 2-substituted ligands favour four-coordination. Five-coordinate complexes have been obtained with both classes of substituted pyridine N-oxides. For example, EPNO (VIII) forms $[ML_s]^{2+}$ species in the solid state (M = Mn, Co, Ni and Zn) when the counteranion is $ClO_4 = Mn$

and $[ML_6]^{2+}$ species (M = Co, Ni) when the counteranion is NO_3^- (ref. 63). It is evident that the type of complex obtained depends on lattice forces only. The ligand picox (IX) forms $[ML_5]^{2+}$ species only with cobalt^{65,66} whereas with nickel a polymeric, supposedly five-coordinate, complex $[(NiL_4)_n]^{2n+}$ has been obtained⁶⁷. Finally, with the 2,6-disubstituted lutox ligand (X), tetrahedral $[ML_4]^{2+}$ complexes are obtained in the solid state which in solution add either another ligand molecule or solvent itself to form five-coordinate species⁶⁷⁻⁶⁹.

Recently, unusual five-coordinate complexes containing monoquaternized polyamines, either as ligands (dabco⁺, Me-dabco⁺) or as counteranions (Me-dabco⁺), have been reported $^{74-78}$. The use of such charged groups highlights the role of lattice energies 79 and the importance of a favourable hydrogen bond network in stabilizing such five-coordinate environments as $[Ni_2Cl_8]^{4-}$, $[NiCl_4(ROH)]^{2-}$, $M(Me-dabco^+)(B)X_3$ (B = H_2O , NH_3), $[M(dabco^+)_2X_3]^+$. In these instances it is difficult to establish any principles or even make intuitive predictions about the formation of five-coordinate complexes.

(ii) Bidentate ligands

(a) Low-spin complexes

Bidentate ligands which give rise to five-coordinate low-spin complexes (Table 2) can be divided into two main groups: (1) neutral ligands containing phosphino and/or arsino groups, or containing one of these groups together with another donor moiety like SMe, SeMe or SbMe₂; (2) anionic thio ligands of the dithiocarboxylate and thioacetylacetonate type. With neutral ligands, five-coordinate $[ML_2X]^+$ species together with planar $[ML_2]^{2+}$ and MLX_2 , and six-coordinate ML_2X_2 species can be obtained. The occurrence of five-coordination does not depend critically on the substituents at the donor atoms; in fact $[ML_2X]^+$ species have been obtained with hydrogen, alkyl or phenyl substituents. However, the size of the chelate ring is an important factor. Most of the five-coordinate complexes of this

TABLE 2

Five-coordinate iron(II), cobalt(II) and nickel(II) complexes with bidentate ligands

Species ^a	Metal ion	Donor set	Physical state ^b with ref.	X-ray data ^C with ref.	Notes
(i) Low-spin complexes	*				
$\{M(das)_2X\}_{\perp}^{+}$	Ni	As ₄ X	s (80)		
(M(noc), Y) T	Ni	As ₄ X	c,s (81)		
[M(cdas) ₃] ²⁺	Ni	As _s	c (82)		
(M(edas)2X)	Co	As ₄ X	s (83)		
	Ni	,	s (82)		
$[M(dpe)_2X]^+$	Co	P_4X	c,s (84,85)	SP,TBP(85a,85b)d	
	Ni	-	s (86)	, , ,	
{M(bdmp) _Z X] *	Co	P ₄ X	c,s (86a)		
172 4	Ni	•	c,s (86a)		
$\{M(TEP)_2X\}^+$	Ni	P_4X	c,s (87)		
$[M(HPPH)_2X]^+$	Ni	P ₄ X	c,s (88)		
M(L) _{1.5} (CN) ₂	Co	P_3C_2	c,s (19)		L = dpp, dpb. bdmp
	Ni		c,s (862,89,90)		-
$M(L)_{1.5}(NCS)_2$	Co	P_3N_2	c,s (19)		L = dpp, dpb
[M(VPP)2X]	Νi	P ₄ X	c,s (91)		
[M(AP) ₂ X]	Co	As ₂ P ₂ X			
	Ni		c,s (93)		
[M(SP) ₂ X] +	Co	S_2P_2X	c,s (92)		
	Ni		c,s (94)		
[M(SeP) ₂ X] ⁺	Co	Se_2P_2X	c,s (92)		
	Ni		c,s (94)		
$[M(sp)_2X]^+$	Ni	S_2P_2X	c,s (95)		
M(stars) X	Ni	Sb2 As2 X	c,s (96)		
[M(das)(ttas)] ²⁺	Ni	As ₅	c,s (97-99)	SP(99)	
M(dpe)(π-ma)Br	Ni	P2C2Br	e (100,101)	SP(100,101)	
M3(dthb)6	N;	Ss	c (102,103)	SP(103)	Trimeric
M2(dthpa)4	Ni	S ₄ Ni	c (104)	SP(104)	Dimeric, Ni-Ni bond
M(ddc) ₂ NO	Co	S4(N)	c (105)	SP(105)	
$[M(PhPMP)_2X]^+$	Co	P_2N_2X	c (106)		
	Ni	• •	e,s (106)		
M(4PAP)2Cl2	Co	?	c (107)		
M(CO)(fdma)l ₂	Ni	As ₂ Cl ₂	c (108)	TBP(109)	
M(CO)(fdpa)I2	Ni	A52Cl2	c (108)		
M(sacsac) ₂ B	Ca	S ₄ (B)	c,s (110,111)		B = PPh ₃ , AsPh ₃ SbPh ₃ , py, pip
(ii) High-spin complexes					
[M(SAL-NMe) ₂] ₂	Co	N_2O_3	c,(s) (112)	TBP(113,114)	Dimerio
(Ni	2-3	c (112)	(X) (113, 114)	(Solid soln, with the Zn complex)
[M(Z-SALen-NEt ₂)					
catec] 2	Ca	N_2O_3	c (118)	(X) (118)	Dimeric
- Late 1 1	Ni	7. ~ 3	c (118)	INT(118)	Dimeric
	4 ***		- (-10)		

TABLE 2 (continued)

Species a	Metal ion	Donor set	Physical state b with ref.	X-ray data c with ref.	Notes
M(Z-SAL-NR)2py	Со	N ₃ O ₂	c,s (119,120)		$R = (2,6-Me_2)C_6H_3$ (2,6-Et ₂)C ₆ H ₃
	Ni		c,s (121)		
M(bza-R) ₂ py	Co	N_3O_2	s (122)		$R = (2.6 - Mc_2)C_6H_3$ $(2.6 - Et_2)C_6H_3$
[M(mepic) ₂ X] +	Co	N ₄ X	c,s (123)		
	Ni		c,s (124)		
[M(dmp)Cl ₂] ₂	Ni	N ₂ Cl ₃	c (125,126)	SP(126)	Dimeric
[M(JAMP)2Xi+	Co	N ₄ X	c (127)		X = Br, I
[M(mbpt)(NCS) ₂],	Co	?	c (128)		Polymeric
$[M(PN)X_2]_{\pi}$	Ni	(PNX ₃)	c,s (129)		Polymetic
$[M(LS)X_2]_{(2)}$	Ni	N_2X_3	c (130)		(Dimeric)
{M(LE)X2 (2)	Ni	N_2X_3	c (130)		(Dimeric)
$[M(qo)_2]_{(2)_+}$	Ni	N_2O_3	c,s (131)		(Dimeric)
[M(atsc)2ČI]	Ni	S_2N_2CI	c (132)	INT(132) ^c	
$M(dmp)(R_2dtp)_2$	Ni	N_2S_3	c (133,134)	SP(133,134)	R ≈ Me
M(quin)(R2dtpi)2	Ni	NS ₄	c (134)	SP(134)	R ≈ Et
$M(R_2dtp)_2B$	Nī	NS ₄ (PS ₄) c,(s) (135-141)		R = alky1; B = amine, PPh ₃
M(R2dtpi)2B	Ni	NS ₄	(s) (135,138)		$R = Ph; B = Et_2NH$
$\{M(pymp)X_2\}_{(2)}$	Ni	(PNX ₃)	c (142)		(dimeric) X = Cl, Br, NCS

The ligand notation is defined in the Abbreviations list. $\frac{a}{b}$ c denotes crystals, s solution and (s) uncertain assignment or equilibria with other species.

d Further structural details of the isomers of [Co(dpe)2Cl] SnCl3 have recently been reported 330.

e Full structural details have recently been reported 331.

type so far isolated contain five-membered rings, the chelate chain being either saturated (ethylene bridge) or unsaturated (vinylene or o-phenylene bridge). Exceptions are the ligand nas, XI, which does form a six-membered chelate ring, but as a part of a naphthalenic

ring and therefore of smaller size81; and the recently reported tetramethyl-substituted bdmp ligand XI186a.

The formation of metal complexes with these neutral ligands can be considered to proceed by the following steps: (1) initial formation of a square planar moiety [ML2] 2+, which can often be isolated by using non-coordinating anions; (2) formation of a monoadduct by adding a coordinating anion (halide or pseudohalide); (3) formation of a six-coordinated

C Symbols for complete X-ray structures: TBP denotes trigonal bipyramid, SP square pyramid and INT intermediate structure. Indirect structural evidence (e.g. isomorphism with compounds of known structure) is indicated by (X).

biadduct. The occurrence of step (2), which can be followed by spectrophotometric or conductometric measurements, is usual when five-membered chelate rings are present in the species $[ML_2]^{2+}$. The geometry of the five-coordinate species varies from TBP to SP as a function of the interligand and ligand—anion repulsions. The strain resulting from six-membered rings causes tetrahedral distortions which may inhibit step (2). If the anion is large and the ligand so bulky as to prevent the attainment of six-coordination, step (3) does not occur. It may also be found that only the ML_2X_2 complex can be isolated from a solution containing $[ML_2X]^+$ and X^- species. Finally it should be observed that the situation may actually be more complicated if other equilibria occur in solution, e.g. dissociation equilibria giving rise to MLX_2 species.

Some examples will illustrate the influence of the factors mentioned in determining the resulting stereochemistry. Let us consider the coordinating properties of the following ligands: HPPH (XIII), TEP (XIV), dpe (XV) and VPP (XVI). The least hindered HPPH ligand gives rise to five-coordinate $[NiL_2X]^+$ (X = Br, I) and six-coordinate NiL_2X_2 (X = Cl, NCS)

species, whereas only six-coordinate complexes are obtained with cobalt(II) (ref. 88). The TEP ligand forms only $[NiL_2X]^+$ species, which are also quite stable in solution⁸⁷. The bulky dpe ligand, on the other hand, forms five-coordinate $[CoL_2X]^+$ (refs. 84, 85), and presumably six-coordinate tetragonal NiL_2X_2 complexes, the latter giving rise in solution to equilibria of the type⁸⁶

$$(NiL_2X_2) \rightleftharpoons [NiL_2X]^+ + X^- \rightleftharpoons NiLX_2 + L$$

The intrinsic steric hindrance of the dpe ligand is partially released when the ethylenic chain is replaced by a vinylenic chain (VPP ligand). In this case the species [Ni(VPP)₂X]⁺ are more stable in solution, and can be isolated in the solid state⁹¹.

As we have pointed out, a long chain inhibits the formation of five-coordinate species; however, the ligands dpp and dpb form binuclear five-coordinate species with the metal cyanides of formula $M_2 L_3(CN)_4$ where two bidentate ligands act as chelates and one as the bridging group ^{89,90}. Similar cyano derivatives, together with five-coordinate $[ML_2X]^+$ species (X = halide), are formed by the less hindered bdmp ligand XII ^{86a}. Presumably the achievement of the binuclear structure must be attributed, at least in part, to the special effect of the CN^- ion in stabilizing five-coordination, mentioned above.

Among diarsines, the following ligands are known to form five-coordinate complexes: das (XVII), nas (XI), edas (XVIII), fdpa (XIX) and fdma (XX).

The first three ligands have the same substituents (methyl groups) at the arsenic atoms and similar rigid and unsaturated chains. Therefore the $[ML_2X]^+$ complexes have quite

As Me₂

$$CH$$

$$As Me2$$

$$CH$$

$$As Me2$$

$$(XVIII)$$

$$As Me2$$

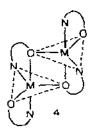
$$(XVIII)$$

$$As Me2$$

$$(XIX) R = Ph$$

$$(XX) R = Me$$

similar characteristics⁸⁰⁻⁸³. The ligands fdpa and fdma, on the other hand, only form unusual carbonyl complexes of formula $NiL(CO)I_2$ (refs. 108, 109). A characteristic of the ligands das and edas (and of tridentate triarsine ligands) is their capability to give rise to $NiAs_5$ chromophores. The arrangement of five $AsMe_2$ groups around the nickel ion appears to be a particularly stable structure. The $[Ni(edas)_3]^{2+}$ complex presumably occurs through the detachment of a donor atom⁸², whereas in the precence of nickel, two das molecules rearranges to give the triarsine molecule (ttas. XXI) and the complex $[Ni(das)(ttas)]^{2+}$ is formed (see scheme 1)⁹⁷⁻⁹⁹.


Some anionic sulphur-containing ligands reported to form five-coordinate complexes are dthb (XXII), dthpa (XXIII), ddc (XXIV) and sacsac (XXV). In these cases the extended

electron delocalization over the ligand is thought to be the main factor which determines the spin pairing. The complexes reported are of two types: (1) ML_2L' complexes (L = ddc, sacsac), i.e. monoadducts with a neutral L' ligand 105,110,111 ; (2) polymeric (ML_2)_n (n = 2,3) complexes which achieve five-coordination either through sulphur bridges (L = dthb) (refs. 102, 103) or through a metal—metal bond in a cage-like structure 104 (L = dthpa) (see schemes 2 and 3). The stabilization of the latter structures is largely due to packing effects in addition to the well known tendency of anionic thio donors to form multiple bridge bonds.

(b) High spin complexes

Ligands capable of forming this type of complex contain oxygen, sulphur (either in anionic or heterocyclic ligands) and nitrogen (heterocyclic bases) as the donor atoms. In contrast to the situation with low-spin complexes, cationic high-spin $[ML_2X]^+$ species are rather rare. The complexes isolated are mostly neutral with formulae ML_2 , MLL', MLX_2 , ML_2L'' and MLL''' (L, L' = bidentate, L'' = monodentate, L''' = tridentate ligand). Five-coordination in the ML_2 , MLL' and MLX_2 complexes is achieved through phenolic oxygen bridges or halogen or pseudohalogen bridges. This type of molecular association generally results from favourable packing effects, since in solution equilibria among various stereo-chemistries occur. A typical example of such bridging ligands is SAL-NMe (XXVI). The bis(N-methyl-salicylideneiminato)nickel(II) complex has been isolated both in a mono-

meric planar form^{111a,111b} and in a polymeric six-coordinate form^{111c}. However, when it forms solid solutions with the analogous zinc complex in a certain range of molar ratios, it assumes the dimeric five-coordinate structure of the latter complex (see scheme 4) (refs. 113, 114). In solution, equilibria between associated six-coordinate, planar and probably

five-coordinate species occur. In contrast the solid cobalt complex is obtained only in the dimeric five-coordinate form, which in solution partially transforms to a monomeric tetra-

hedral form¹¹². It should be recalled here that SAL-NR ligands with bulkier imine substituents preferentially form four-coordinate complexes¹¹⁵⁻¹¹⁷.

The stability of oxygen-bonded dimers is indicated by the structure of the complex [M(Z-SALen-NEt₂)catec]₂ (see scheme 5), where the achievement of five-coordination

through an oxygen bridge is preferred to a monomeric structure with all the potential donor atoms singly coordinated 118.

The occurrence of five-coordinate MLX_2 complexes as associated species through halide bridges depends on the use of sterically crowded ligands (in order to prevent six-coordination) and anions particularly capable of forming bridges. These conditions are fulfilled, for example, with the ligands PN (XXVII)¹²⁹, LS (XXVIII)¹³⁰, LE (XXIX)¹³⁰, pymp (XXX)¹⁴² and NiX₂ (X = Cl, Br, NCS). When X = I, however, tetrahedral MLX₂ complexes are ob-

tained. Tetrahedral complexes are also obtained with cobalt(II) or iron(II) salts in agreement with the stronger tendency of these metal ions to give such stereochemistry. Finally the Ni(dmp)Cl₂ (dmp = XXXI) complex has been isolated in two isomeric forms, one

pseudotetrahedral and the other dimeric five-coordinate 125,126.

The axial addition of a fifth ligand, either neutral or charged, to a planar metal chelate [ML₂] ⁺ to give a five-coordinate adduct is common, as seen above, when the resulting complex is low-spin, but it is uncommon when the resulting complex is high-spin. When the overall ligand field of the chelates and of the incoming group is sufficient to preserve the low-spin state, the structural perturbation caused by the fifth ligand is rather small and five-coordination may be preferred to six-coordination, which could require a change in spin-state. On the other hand, when the addition of a fifth ligand causes spin unpairing, the

stability of the resulting complex is in general smaller than that of the six-coordinated biadduct unless the overall steric factors do not favour the latter coordination. For example, from planar bis [(N-2,6-dialkylphenyl)-Z-salicylideneiminato] nickel(II) and pyridine, either the six-coordinated biadduct or the five-coordinated monoadduct are isolated, or the unchanged starting complex is recovered, depending on the nature of the substituent Z^{121} . Monoadducts have also been isolated with the analogous cobalt(II) complexes, which are themselves high-spin and therefore no change of spin-state occurs upon the formation of five-coordinate species 119,120 .

High-spin five-coordinated adducts are obtained also from the planar bis-dithio chelates of nickel(II) (alkyl or aryl-substituted dithiophosphates or dithiophosphinates) and primary, secondary, and heterocyclic amines $^{135,137-141}$, or Ph₃P (ref. 136). In some cases, the thermodynamic functions of the planar \rightleftharpoons five-coordinate equilibria have been determined $^{140-141}$

TABLE 3

Five-coordinate iron(II), cobalt(II) and nickel(II) complexes with tridentate ligands

Species ^a	Me tal ion	Donor set	Physical state b with ref.	X-ray data ^c with ref.	Notes
(i) Low-spin complexes			-	· - · - · - · - · - · - · - · - · - · -	
M(TAS)X2	Ni	As ₃ X ₂	c.s (143,146a)	SP(144)	
[M(TAS) ₂] ²⁺	Ni	As ₅	c,s (99,143,145))	One unbonded donor
M(ttas)X ₂	Ni	As ₃ X ₂	c,s (145)		
[M(ttas) ₂] ²⁺	Ni	A55	c,s (145)		One unbonded donor
M(AsNAs)X2	Ni	As_2NX_2	c,s (146)		
M(AsSAS)X ₂	Ni	As ₂ SX ₂	c,s (146)		
M(DAP)X ₂	Ni	As ₂ PX ₂	c,s (146a)	SP(146b)	
M(PSP)X ₂	Co	P_2SX_2	c,s (147)		
	Ni		c (147,148)		
M(R-PNP)X ₂	Co	NP_2X_2	c,(s) (147)	(X) (147)	R = H, Me
	Ni		c (147)	SP(149,150)	
M(NNP)X ₂	Ni	N_2PX_2	c (151)		X = 1
M(SNP)X ₂	Ni	SNPX ₂	c,s (151)		$\mathbf{X} = \mathbf{I}$
M(FTP)X ₂	Ni	P_3X_2	c,s (151a)		
M(TPH)X ₂	Co	P_3X_2	c,(s) (152)		
	Ni		c (152a)		
M(DSP)X ₂	Ni	S ₂ PX ₂	c,s (94)	SP(153)	
M(TDPME)X ₂	C٥	P_3X_2	c,(s) (154)		
	Ni		c,(s) (154)		
M(TDPMM)X ₂	Co	P_3X_2	c,s (155)		
$[M_2(TAS)_3(OH_2)]^{2T}$	Ni	?	¢ (156)		(Dimeric)
$[M_2(DAP)_3(OH_2)]^{2T}$	Ni	?	c (156)		(Dimeric)
M ₂ (DMS) ₂	Ni	S ₄ Ni	c (157,158)	SP(159,160)	Suggested Ni-3 bond

TABLE 3 (continued)

Species ^a	Metal ion	Donor set	Physical state b with ref.	X-ray data ^c with ref.	Notes
M(pnp)X ₂	Ni	P ₂ NX ₂	c,s (161)		X = Br, I
M(pmp)X ₂	Co	P ₂ NX ₂	c,s (162)		X = I
-	Ni		c,s (162)		X = Cl, Br, i
(ii) High-spin complexes					
M(Z-SALen-NR ₂) ₂	Co	N ₃ O ₂	c,s (163)	(X) (163,165)	$Z = H_1$ 3-Cl, 5-Cl, 3-Me, 5-Me; $R = Et_1$ -(CH ₂) ₄ -, -(CH ₂) ₅ -
	Ni		c,s (164)	SP(165,166)	Z = 3-Cl, 5-Cl, 3, 4-benzo; R = Et -
M(ONSMe) ₂	Co	N_2O_2S	c,s (167)		
$\{M(SALphen-NR_2)X\}_2$	Co	N_2OX_2	c (168)		Dimeric
M(Mesdien)X2	Fe	N_3X_2	c,s (169)	(X) (169)	
	Co		c,s (169)	INT(170,171)	
	Ni		c,s (169)	(X) (169)	
M(Etadien)X2	Co	N_3X_2	c,s (172,173)	TBP(174)	
	Ni		s (173,175)		X = CI, NCO
M(Me4daeo)X2	Fe	N_2OX_2	c.s (176)		
	Co		c,s (176)		
	Ni		c,s (176)		
M(Me4daes)X ₂	Co	N ₂ SX ₂	c,(s) (177)		
MARKAD - NEW NO	Ni C-	N. V	c,(s) (177)		
M(MABen-NEt ₂)X ₂	Co Ni	N_3X_2	c,s (178) c,(s) (178)		
M(MSBen-NEt ₂)X ₂	Co	N2SX2	c,s (179)		X = NCS
M(MSBell-NE (2)M2	Ni	1120712	c,(s) (179)		
M(MOBen-NMe ₂)X ₂	Ni	N2OX2	c,(s) (180)		
M(MOBtn-NMe ₂)X ₂	Ni	N ₂ OX ₂	c,(s) (180)		
M(mpdo)X ₂	Ni	N ₂ OX ₂	c,s (180)	INT(181)	X = Br
M(NNY)X2	Ni	$N_2P(As)X_2$	c,s (151)		NNY = NNP, NNA
M(ONY)X2	Ni	ONP(As)X ₂			ONY = ONP, ONA
M(SNY)X2	Νi	SNP(As)X ₂	c,s (151)		SNY = SNP, SNAs
M(Z-SALen-NR ₂) (Z'-SAL-NR')	Ni	N ₃ O ₂	s (182)		Z = 5-C1; R = E1; Z' = H, 3-C1, 5-C1; R' = Me, Et, iso-Pr,
	_			en	n-Pr, n-Bu
M(paphy)X ₂	Co	N ₃ X ₂	c,s (183)	SP(184,185)	D = 16 F-
$M(paenR_2)X_2$	Co	N_3X_2	c,s (186)		R = Mc, Et
	Ni C-	N V	c,s (186)		R = Mc, Et, n-Pt,
M(DAP-R ₂)X ₂	Co	N ₃ X ₂	c,s (187)		iso-Pr, sec-Bu, Cy
	Ni		c,s (187)		
M(terpy)X ₂	Fe Ca	N ₃ X ₂	c (188) c,s (183,188- 191)	INT(192)	
	Ni		c (183,189)	(X) (188)	
M/DDEA)Y.	Fe	N ₃ X ₂	c (193)	(/L) (400)	
M(DPEA)X ₂	Co		e,s (193)		
	Ni		c,s (194)		

TABLE 3 (continued)

Species ^q	Metal ion	Donor set	Physical state b with ref.	X-ray data ^c with ref.	Notes
M(DPES)X ₂	Ni	N ₂ SX ₂	c,s (194)	_	
M(SNNMe)X ₂	Fe	N_2SX_2	c,s (195)		
	Co		c,s (195)		
M(Me2dpma)X2	Ni	N_3X_2	c,s (196)	INT(197)	
M(paphenMe ₂)X ₂	Fc	N_3X_2	c,s (198)		
	Co		c,s (198)		
	Ni		c,s (198)		
M(baphenMe ₂)X ₂	Fe	N_3X_2	c,s (198)		
· - •	Co		c,s (198)		
	Ni		c,s (198)		
$M(abMe_2)X_2$	Fe	N_3X_2	c,s (198)		
	Co		c,s (198)		
	Ni		c,s (198)		
M(SNS)X ₂	Co	NS_2X_2	c,s (199)		
M(MeDPT)X2	Ni	N_3X_2	c,s (200)		
$M(DENB_2)X_2$	Ni	N_3X_2	c,s (202)		
$M(DPNB_2)X_2$	Ni	N_3X_2	c,s (202)		
$M(pytz)X_2$	Fe	N_3X_2	c,s (203)		
M(mpq)X ₂	Ni	N_3X_2	c,s (204)		
М(R-ппр)X ₂	Co	N_2PX_2	c,(s) (205,206)	INT(207)	R = H, Me
M(H-nnpO)X ₂	Co	N2OX2	c,s (206)	TBP(208)	X = NCS
M(btpy)X ₂	Fe	NS_2X_2	c (209)		
	Co		c (209)		
$M(TDEH_2)X_2$	Co	O_2SX_2	c,s (210)		X = CI
• -	Ni		c,s (210)		
M(mpdc)X ₂	Fe	N_2SX_2	c (211)		
· •	Ni		c (211)		
M(pnp)X ₂	Fe	P_2NX_2	c,s (161)		$X = CI' B^L$
	Co	, –	c,s (161)		X = CI
M(pnip)X ₂	Fe	P_2NX_2	c,s (162)		X = C1, Br, I, NCS
•	Co		c,s (162)		X = C1
$[M(NSN)_2]^{2+}$	Co	N ₃ S ₂	c (212)		

^q The ligand notation is defined in the Abbreviations list.

(iii) Tridentate ligands

(a) Low-spin complexes

Among the ligands which give rise to five-coordinate complexes tridentate ligands (Table 3) are the most numerous. In fact the most common five-coordinate complexes are of the type MLX₂ where the neutralization of the charges may add further stability. Moreover, non-ionic species are favoured by the fact that five-coordinate complexes are generally obtained from organic solvents of low polarity. Low-spin complexes are obtained with ligands having As, P or S as donor atoms. The introduction of nitrogen into the donor set may result in a ligand field which stabilizes high-spin complexes.

b c denotes crystals, s solution and (s) uncertain assignment or equilibria with other species.

Symbols for complete X-ray structure: TBP denotes trigonal bipyramid, SP square pyramid and INT intermediate structure. Indirect structural evidence (e.g. isomorphism with compounds of known structure) is indicated by (X).

The ligands used are either of the linear or the branched type. The linear ligands are the most common. The chains bridging the three donor atoms can be either aromatic or aliphatic. In the latter case, the resulting chelate rings can be five- or six-membered. In contrast to complexes with bidentate ligands, the complexes with six-membered chelate rings are more stable than the five-membered with respect to the dissociation into planar [MLX] * species.

The mechanism of the formation of the five-coordinate complexes can be considered to proceed via the following steps: (1) formation of a planar species [MLX]⁺ with the three ligand donors and the X donor nearly in the same plane; (2) addition of the second X donor in the apical position with neutralization of the charge and lowering of the basal X donor under the main basal plane because of X-X electrostatic repulsions.

From the available X-ray structures of these MLX_2 complexes, it appears that the interactions between the apical donor and the basal groups are quite strong^{144,150}. Moreover the antibonding character of the d_{z^2} orbital, which is filled for nickel(II) and half filled for cobalt(II), favours the apical elongation of the square pyramid. As a consequence of these factors the apical M-X bonds are in general longer than the basal M-X bonds⁷.

Actually, planar [MLX] * species have been isolated only with nickel(II). Their relative stability with respect to the five-coordinate MLX₂ species and therefore the tendency of the latter form to dissociate in solution depends both on the overall steric requirements of the basal donors and on the specific tendency of the metal ion to give planar species. For cobalt complexes the above scheme is unrealistic in that, when the steric factors do not allow the formation of five-coordinate species, tetrahedral species are formed. For example with the ligands PSP (XXXII)^{147,148}, TPH (XXXIII)^{152,152a} and R-PNP (XXXIV)¹⁴⁷ which differ in the central donor group, either five- or four-coordinate (planar with nickel and tetra-

hedral with cobalt) species have been reported. The first two ligands from solid five-coordinate MLX_2 complexes with both cobalt(II) and nickel(II). In solution, the nickel complexes (with the exception of Ni(TPH)(CN)₂ (ref. 152a)) dissociate completely to give planar [NiLX] * species. The R-PNP ligands deserve more comment in that they show the effects of the bulkiness of the R group. Both in the solid state and in solution the cobalt complexes with R = H are five-coordinate, whereas when R = Cy, pseudotetrahedral complexes with a CoP_2X_2 microsymmetry are obtained ¹⁴⁷. With R = Me, a five-coordinate \rightleftharpoons tetrahedral equilibrium exists in solution, while the solid complex is five-coordinate ¹⁴⁷. Analogously the NiLX₂ compounds (in the solid state) are five-coordinate when R = H or Me and planar when R = Cy, although the former complexes undergo essentially complete dissociation in solution ¹⁴⁷ according to the equation

$$NiLX_2 \rightleftharpoons [NiLX]^+ + X^-$$

Among the ligands giving rise to six-membered chelate rings the ligands TAS (XXXV) and ttas (XXI) are among the more versatile, in that in addition to the MLX₂ species¹⁴³, ^{145,146a} they also give five-coordinate [NiL₂] ²⁺ species with a free terminal donor group ^{143,145} (with a structure similar to that of the [Ni(das)(ttas)] ²⁺ species reported among the

bidentate ligands)⁹⁷⁻⁹⁹. The former also gives a binuclear complex $Ni_2L_3(H_2O)(ClO_4)_2$, probably containing two five-coordinate moieties bound by a ligand bridge¹⁵⁶.

Unusual from a stereochemical point of view are the Ni(DSP) X_2 complexes⁹⁴, in that the apical position of the approximately square pyramid is occupied by a terminal thioether donor. This is presumably due to the particular rigidity of the ligand skeleton¹⁵³.

The branched tridentate ligands which may form low-spin five-coordinate complexes are TDPME (XXXVI)¹⁵⁴ and TDPMM (XXXV_I)¹⁵⁵. The geometry of these ligands is not

suited to MLX₂ five-coordinated stereochemistry. However, together with four-coordinate MLX₂ species (planar with nickel and tetrahedral with cobalt), where the ligands behave as bidentate, five-coordinate structures with one phosphorus atom weakly bound have also been proposed^{154,155}.

Finally the existence of a dimeric complex Ni₂(DMS)₂ (DMS shown as XXXVIII), consisting of two planar units sharing two sulphur atoms, should be mentioned. The dihedral angle of 82° brings the nickel atoms into an unusually close proximity, which may suggest

the existence of the fifth bond (Ni-Ni) (refs. 157-160).

(b) High-spin complexes

Five-coordinate high-spin complexes with tridentate ligands are mainly of two kinds:

(1) neutral ML_2 or cationic $[ML_2]^{2+}$ complexes in which one ligand L acts as tridentate and the other as bidentate; (2) neutral MLX_2 complexes where X is a halide or pseudo-halide.

The neutral ML₂ complexes are the M(Z-SALen-NR₂) (M = Co, Ni), (protonated Z-SALen-NR₂ shown as XXXIX). The occurrence of five-coordination is due mainly to a favourable electronic and steric balance of the various substituents on the aromatic ring and on the β-nitrogen. In general, in solution there are four-coordinate (planar with nickel and tetrahedral with cobalt), five- and six-coordinate species in equilibrium, with the largest proportion of five-coordinate species occurring when the substituent at the salicylald-imine ring is 5-Cl and the substituents at the nitrogen are ethyl groups^{163,164}. In this case, as well as with some other substituents, five-coordinate species with a free dialkylamino group are also obtained in the solid state (see scheme 7) (refs. 163–166). A similar situation occurs with the M(ONSMe)₂ (protonated ONSMe shown as XL) complexes where

Z

$$CH_{E}H_{2}C$$
 $CH_{E}H_{2}C$
 OH
 OH
 $I(XAX/X) = NR_{2}$
 $I(XL) = SMe$
 OH
 OH

one of the two thioether groups is not bound 167.

The MLX₂ complexes are quite numerous (and often easily obtained). The steric and conformational requirements of the ligands capable of forming this type of complex are not so strict as in other cases previously mentioned. The chelate rings can be either five- or six-membered and the chains can be ethylenic, propylenic, o-phenylenic, etc. Similarly the ligand groups vary over a wide range from amines (aromatic and aliphatic), heterocyclic nitrogens and imines to thioethers and ethers. The most common donor set is $N_3 X_2$, realized with several different nitrogen donor groups. The set $SN_2 X_2$ is also rather common and some examples of donor sets S_2NX_2 , $ON_2 X_2$ and $ONSX_2$ are known. When a low-spin-inducing phosphorus or arsenic donor atom is present in the donor set together with nitrogen, oxygen or sulphur ("hybrid" ligands), the spin-state depends on the nature of the coordinated anion and on the lattice forces which may affect the geometry of the chromophore⁵. Some examples of complexes with intermediate magnetic properties will be given in Sect. B (νi).

The high-spin MLX₂ complexes are in general more stable, with respect to the dissociation

$$MLX_2$$
 (five-coordinate) \Rightarrow [MLX] + (planar) + X

than the corresponding low-spin complexes. More frequently the following equilibrium occurs

involving the detachment of a donor group of the tridentate ligand. The type of equilibrium, if any, depends mainly on the metal ion. Cobalt complexes often give rise to the latter equilibrium, while for nickel the type of equilibrium depends on the strength of the donor atoms. When the coordinate bonds are largely covalent, i.e. with primary amines, P and As atoms, planar species are generally formed. With weaker and more bulky donor groups (generally tertiary amines), tetrahedral species can be obtained. The competition among all of these species, as well as six-coordinated species, is influenced by the substituents at the donor atoms, the nature of the X group and the specific tendency of the metal ion. Although it is difficult to account for the occurrence of five-coordination in every specific case in this class of complexes, by briefly surveying the numerous reported complexes it is possible to obtain an idea of the conditions necessary for it. As outlined above the preference of the metal ion for a five-coordinated structure with respect to a four-coordinated one depends on the geometry (planar or tetrahedral) of the alternative four-coordinate complex. When the alternative structure is six-coordinated, five-coordination is more favoured for cobalt than for nickel. For example, the Mes dien ligand XLI is of the right size to form stable five-coordinate complexes with most of the first row transition metal salts $(X = CI, Br, I, NCS)^{169}$. The analogous Et₄ dien (XLII), which has larger terminal donor groups and a less basic central nitrogen donor, forms five-coordinate complexes with cobalt¹⁷²⁻¹⁷⁴ and planar with nickel¹⁷⁵, the latter giving rise to the $[MLX]^{+} + X^{-} \neq MLX_{2}$ equilibrium in solution 175. However the Ni(Et4 dien)(NCS)2 complex is polymeric six-coordinate 173. It appears therefore that bulkiness by itself is not the only factor determining the coordination number but that the overall properties of each donor group are also im-

portant. For example, the thiocyanate group has a strong tendency to act as a bridging ligand and therefore to form six-coordinate associated species. Stable five-coordinate nickel halide complexes, but polymeric six-coordinate thiocyanate complexes, are formed with the ligands DENB₂ (XLIII) and DPNB₂ (XLIV), which have the same skeleton as the Et₄ dien and Me₅ dien ligands²⁰². The same basic skeleton is also present in the ligands H-nnp (XLV)^{205,206}, Me-nnp (XLVI)^{205,206}, Me-nnp (XLVIII)¹⁷⁷, which also give rise to high-spin five-coordinate nickel, cobalt and iron complexes. The first two

ligands give rise in solution to equilibria with tetrahedral species whose abundance increases with the bulkiness of the substituent ($H < CH_3$) on the central nitrogen donor²⁰⁶. A similar equilibrium is also shown by the Me₅ daes complexes¹⁷⁷. The ligand MeDPT (XLIX),

containing two primary amino groups, also forms five-coordinate NiLX₂ complexes; the larger dimension of the chelate rings appears to provide the steric requirements necessary to limit the coordination number to five²⁰⁰.

The corresponding Me-dien ligand (Me-dien denotes bis(2-aminoethyl)methylamine) forms $(MLX_2)_n$ six-coordinate polymeric complexes²⁰¹.

Another series of ligands of some interest from the point of view of coordination versatility is constituted by the Schiff bases formed from N₂V-diethylethylenediamine and osubstituted benzaldehydes: MABen-NEt₂ (L), MSBen-NEt₂ (LI), and MOBen-NEt₂ (LII). The MAB and MSB derivatives form five-coordinate complexes with nickel halides^{178,179},

whereas cobalt halides give rise to five-coordinate complexes with the former ligand ¹⁷⁸ and tetrahedral with the latter, the thioether group probably being non-coordinated ¹⁷⁹. This is consistent with the lower donor power of thioether sulphur compared with amine nitrogen. With the weak donor methoxy group only tetrahedral complexes are obtained ¹⁸⁰. However, when the bulkiness of the substituents on the β -nitrogen is decreased (methyl groups) or the aliphatic chain is made more flexible (trimethylenediamine either N_iN -dimethyl or N-ethyl) even the MOB derivatives are able to form five-coordinate nickel complexes ¹⁸⁰, ¹⁸¹.

Several MLX₂ complexes are obtained with ligands containing one or more heterocyclic nitrogen atoms. The existence of extended π-systems adds further stability to the complexes. Typical ligands L are DAP-R₂ (LIII)¹⁸⁷, terpy (LIV)^{183,188–191}, DPEA (LV)^{193,194}, DPES (LVI)¹⁹⁴ and Me₂ dpma (LVII)¹⁹⁵. Comparison of DPEA, DPES and (R₂)dpma is interest-

$$Me \xrightarrow{C} N \xrightarrow{C} Me \xrightarrow{N} N \xrightarrow{N} N \xrightarrow{R} N \xrightarrow{R$$

ing. The former two ligands give rise to five-coordinate complexes, even without substituents on the pyridine ring 193,194 , whereas the unsubstituted dpma ligand (R = H), owing to the small size of chelate rings, forms only six-coordinate [NiL₂] $^{2+}$ complexes 196 . However five-coordinate MLX₂ complexes are obtained when adequate hindrance is provided (e.g. by the *ortho* methyl groups in Me₂ dpma) 196,197 . On the other hand, terpy, which can be considered the fully heterocyclic analogue of dpma, forms either the octahedral [ML₂] $^{2+}$ or the five-coordinate MLX₂ species (M = Fe, Co, Ni), depending on the synthesis conditions $^{138-192}$. In solution, however, the latter complexes readily add a molecule of solvent or ligand thus becoming six-coordinated 189,191 .

TABLE 4

Five-coordinate iron(II), cobalt(II) and nickel(II) complexes with tetradentate ligands

Species ^a	Metal ion	Donor set	Physical state ^b with ref.	X-ray data ^C with ref.	Notes
(i) Low-spin complexes					
$[M(QP)X]^+$	Гe	P4 X	c,s (213,214)		
•	C۵	•	c,s (213,215)	INT(216)	
	Ni		c.s (213,217)		
[M(QAS)X] ⁺	Ni	As4 X	c,s (213,217)		
[M(qas)X]	Ni	As ₄ X	c,s (218)		
$[M(Qas)X]^+$	Ni	As ₄ X	c,s (219)		
$[M(qp)X]^{\frac{1}{4}}$	Co	P ₄ X	c,s (220)		
	Ni		c,s (220)		
[M(TAP)X] [†]	Ni	PAs ₃ X	c,s (221)	TBP(222)	
[M(TAP)(OH ₂)] ²⁺	Ni	PAs ₃ O	c,s (221)		
[M(TSP)X] ⁺	Ni	PS ₃ X	c,s (223)	TBP(224)	
[M(TSP)B] 2+	Ni	PS ₃ (B)	c,s (223)		B = PPh ₃ , PMePh ₂ , tu
[M(TSeP)X] +	Ni	PSc ₃ X	c,s (225)		
$M(NP_3)X_1^{+}$	Co	NP ₃ X	c,s (226)	SP(227,228)	$X = NCS$, (I, when $Y = I$, BF_4 , PF_6)
	Ni		c,s (226,229)	TBP(230,231)	
$\{M(NAs_3)X\}_{+}^{+}$	Ni	NAs ₃ X	c,s (146)	·	
$[M(N_2P_2)X]^+$	Ni	N_2P_2X	c,s (232,233)	INT(234)	
[M(NOP ₂)X] ⁺	Co	NOP ₂ X	c,s (235)	(X) (235)	X = NCS
•	Ni	-	c,s (235)	ESP(236,237)	
$\{M(N_2OP)X\}^+$	Ni	N ₂ OPX	c (238)		X = I, NCS
$[M(NOAs_2)X]^+$	Ni	NOAs ₂ X	c,s (238)		
$[M(SAs_3)X]^+$	Ni	As ₃ SX	c,s (239)	TBP(239)	
[M(ASTP)X] +	Ni	AsP ₃ X	c,s (240,241)		
[M(SBTP)X]+	Νi	SbP ₃ X	c,s (240,241)		
M(PTAS)X]+	Ni	PAs ₃ X	c,s (240,241)		
[M(SBTAS)X] +	Ni	SbAs ₃ X	c,s (241)		
[M(sbtas)X]	Ni	SbAs ₃ X	c,s (242)		
M(PSSP)X) +	Co	P2S2X	c,s (243)		
F	Ni	I	c,s (148,243)		

TABLE 4 (continued)

Species a	Metal ion	Donor set	Physical state b with ref.	X-ray data ^C with ref.	Notes
[M(PNNP)X] +	Co	N ₂ P ₂ X	c,s (244)	ESP(245)	
Internet by	Ni	112122	c,s (244)	ESP(245)	
{M(BDPI)X] +	Ni	N_2P_2X	c,s (246)	201 (210)	
[M(SALen)] ₂	Co	N_2O_3	c (247)	SP(248,249)	Dimeric
M(SALen)py	Co	N ₃ O ₂	c,s (247)	SP(250)	
[M(tmac)X]+	Ni	N ₄ X	e,(s) (251)	51 (23 0)	
[M(CR)X]	Co	N ₄ X	c,s (252)		
(Ni		c (253)	ESP(254)	X = Br
[M(CRH)X] *	Co	N_4X	c,s (252)	,	
•	Ni	•	c _s (s) (255)	ESP(256)	$X = CIO_4$
[M(CR)B] 2+	Co	N ₄ (B)	c,s (252)		$B = NH_3, H_2O, py$
[M(TTP)X] ⁺	Ni	S ₄ X	s (257)		X = 1
(ii) High-spin complexes					
[M(R ₆ tren)X]+	Fe	N ₄ X	c,s (258)	TBP(259)	R = Me, Et
fartwenerity)	Co	1147	e,s (260,233)	TBP(261)	v - Me' fr
	Ni Ni		c,s (260,233)	TBP(262,263)	
[M(man)V]+	Co	N ₄ X	c,s (264)	1 BF(202,203)	X = I, NCS
[M(tren)X] ⁺ [M(Me ₆ tpt)X] ⁺		N ₄ X	•		X = 1, 14C3
[M(McStbt)X]	Co Ni	NAA	c (265)		
[M(tpt)X] ⁺		N_4X	c,s (265)	TBP(267)	
[M(M)	Co		c,s (266)	1 BP(207)	3 3
$[M(Me_n tpma)X]^+$ $[M(N_3P)X]^+$	Ni C-	N ₄ X	c,s (196) c,s (232,233)	TTDD/ACO	n = 2, 3
[M(N3P)X]	Co	N ₃ PX		TTBP(268)	
$\{M(N_3A_5)X\}^+$	Ni	N. L.V	c,s (233,269)	(X) (233)	
[M(N3AS)A]	Co	N ₃ AsX	c,s (232,233)		X = 1
$[M(N_2P_2)X]^+$	Ņi Co	N_2P_2X	c (232,233) c,s (232,233)	TTBP(234)	X-1
M(L)(NCS) ₂	Co	N ₅	c,s (232,233)	1101(234)	$L = N_3P, N_3As$
M(L)(MC3)2		145		SP(271,272)	2 - 1431, 143743
$[M(N_3O)X]^+$	Ni Co	N ₃ OX	e,s (232,233) e,s (273)	35(2/1,2/2)	
(M(N3O)X)	Ni	N3OX	c,s (273)		
$[M(N_3S)X]^+$	Co	N ₃ SX	c,s (273)		
fur(1432)×1	Ni	11337	c,s (273)		
M(L)(NCS) ₂	Co	Ns	c,s (273)	TBP(274,275)	$L = N_3O, N_3S$
m(L)(IICa)2	Co	115	C,3 (273)	(114,275)	Et ₆ tren
	Ni		c,(s) (273)	(X) (273)	8
[M(N-O ₂)X] +	Co	NO_3X	s (273)	(, (,	
[M(N-O ₃)X] ⁺ [M(N ₂ O ₂)X] ⁺	Со	N_2O_2X	c,s (273)		
	Ni		c,s (273)		
$[M(N_2S_2)X]^+$	Co	N_2S_2X	c,s (273)		
	Ni		c,s (273)		
$\left[M_2(bdhe)_2\right]^{2+}$	Ni	N_3O_2	c,s (276,277)	TBP(276,277)	Dimeric
[M(NP ₃)X] ⁺	Co	NP ₃ X	c,s (226)	TTBP(278) d	$X = CI$, Br. (I, when $Y = BPh_4$)
$[M(N_2OP)X]_{+}^{+}$	Co	N ₂ OPX	c,s (238)		4 4-2
[M(N2SP)X]+	Co	N ₂ SPX	c,s (238)		
[M(NOP ₂)X] ⁺	Co	NOP ₂ X	c,s (235)	TTBP(279)	X = CI, Br, I
$[M(NS_3-R)X]^+$	Co	NS ₃ X	c,s (280, 281)	TBP (281)	R = Me, Et, iso-Pt,
ferring areas			-,- (200, 201)		tertBu
	Ni		c,s (281)		R = Et, iso-Pr. tertBi
M(Z-SALen)(OH ₂)	Co	N_2O_3	c (247)		Z = 3-MeO
	~~		~ \~/		

TA	$_{ m BL}$	E.	4	(con:	tinu	ed)
		_	,			~-,

Species a	Metal ion	Donor set	Physical state b with ref.	X-ray data ^C with ref.	Notes
M(dacoDA)(OH ₂)	Со	N ₂ O ₃	c,s (282,283)	(X) (283)	
	Ni		c,s (282,283)	SP(284)	
$[M(tet)X]^{+}$	Co	N_4X	c,s (285,286)	(X) (286)	
• • • •	Ni		c.s (285,286)	SP(285)	
$[M(1,7-CT)X]^{+}$	Fe	N ₄ X	c,s (287,287a)	•	
$[M(1,3,7,10-CT)X]^+$	F€	N ₄ X	c,s (287,287b)		
{M(CRH)X} +	Fe	N_4X	c,s (287)		
[M(TACD)X] ⁺	Ni	N ₄ X	c,s (288)		
M(bphen)(OH ₂)	Ni	N_2O_2X	c,s (289)		

The ligand notation is defined in the Abbreviations list.

d Full structural details were recently reported 332.

(iv) Tetradentate ligands

(a) Low-spin complexes

The use of tetradentate ligands to facilitate the synthesis of five-coordinate complexes is quite widespread (see Table 4). Because of the presence of a large number of chelate rings the resulting complexes are generally quite stable. Moreover, tetradentate ligands can be made with such a geometry that, once they are coordinated to the metal ion, only one further coordination position is available.

As outlined in the introduction, low-spin complexes may be obtained either with strong field donors (P and As), or, in the presence of weaker donors, when the resulting complex has an elongated square pyramidal structure. The latter stereochemistry is quite common with tetradentate open-chain and macrocyclic ligands. However, the most commonly used tetradentate ligands are tripod-shaped, since the tripod geometry is the most favourable for the formation of trigonal bipyramidal complexes in which the top (central) donor occupies one axial position and the three terminal donors the equatorial positions. If the bulkiness of the latter donor groups and the length of the chelate chains are properly chosen, only one further ligand, generally a halide or pseudohalide, can enter into the coordination sphere. The resulting cationic species [MLX]⁺ are isolated either with the same X as counteranion, or more commonly with anions of low coordinating power such as CiO₄⁻, BF₄⁻, PF₆⁻ or BPh₄⁻.

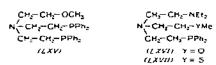
Low-spin cobalt complexes of this type are not as common as those of nickel since they tend to distort towards a tetrahedron which stabilizes the high-spin state⁵. This is the case with the ligands NP₃ (LVIII) (refs. 226, 230, 231) and N₂P₂ (LIX) (refs. 232-234) which form low-spin trigonal bipyramidal nickel(II) complexes and usually, high-spin cobalt(II)

b c denotes crystals, s solution and (s) uncertain assignment or equilibria with other species.

Symbols for complete X-ray structures: TBP denotes trigonal bipyramid, SP square pyramid, INT intermediate structure, ESP elongated square pyramid and TTBP tetrahedrally distorted trigonal bipyramid. Indirect structural evidence (e.g. isomorphism with compounds of known structure) is indicated by (X).

complexes. The exceptions are $[Co(NP_3)I]Y$ (where Y = I, BF_4 and PF_6) and $[Co(NP_3)NCS]$ BPh₄, which are low-spin square pyramidal with an apical phosphorus atom^{227,228}. For $[Co(NP_3)X]$ Y complexes see Sect. B (vi). Ligands containing multiple arsenic donor atoms have been found to bind to nickel(II), but not to iron(II) and cobalt(II).

The chains linking the donor groups are generally o-phenylenic, ethylenic or trimethylenic. Their length affects the geometry of the complex, in the sense that when the chelate rings are five-membered (o-phenylenic or ethylenic chains), the angles at the metal (L(apical)-M-L(equatorial)) are smaller than 90° , so that the metal is located below the equatorial plane of the resulting trigonal bipyramid. With trimethylenic chains the metal lies on the equatorial plane or even above it. The anomalous spectrochemical sequence (P > Sb > As) found for the apical donors in complexes with five-membered chelate rings (LX) has


been attributed to the "compression" of the apical donor towards the metal orbitals, which is greatest in the case of the large antimony atom²⁴¹. The normal spectrochemical series (P > As > Sb) is found for analogous aliphatic ligands forming six-membered chelate rings (LXI) (refs. 218, 221, 242).

The electronic and steric requirements of the donor groups influence the stability of the complexes more than the chain length does. For example, although all three tripod ligands QAS (LXII)²¹⁷, Qas (LXII)²¹⁹ and qas (LXIV)²¹⁸ with donor sets As₄ readily form stable [NiLX] + complexes, in solution the ligand Qas displaces QAS from its complexes, proba-

$$AS \begin{pmatrix} AS \\ ASR_2 \end{pmatrix}_3 \qquad CH_2 - CH_2 - CH_2 - ASMe_2 \\ ASR_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - ASMe_2 \\ CH_2 - CH_2$$

bly on account of the greater donor power of the AsMe₂ groups compared with that of the AsPh₂ groups²¹⁹.

When the terminal donor groups are not equivalent (i.e. one donor group is different from the other two, or all three are different) a coordinative distortion or even a change in coordination number may occur depending on the nature of both the metal ion and the donor groups. For example, nickel complexes with the ligand NOP₂ (LXV)²³⁵ have the oxygen donor weakly coordinated at the apex of an elongated square pyramid (see scheme 8) ^{236,237} whereas those of the N₂OP (LXVI) and N₂SP (LXVII) ligands are planar, the methoxy- and methylthio-groups respectively not being coordinated at all, except under particularly favourable solid state packing conditions²³⁸. On the other hand the complexes of co-

balt, which has a very low tendency towards planar stereochemistry, are trigonal bipyramidal with all these three ligands^{235,238}. With this metal a geometrical distortion towards the tetrahedron is found²⁷⁹, which is responsible for the high-spin state of its complexes.

Finally, to illustrate the importance of the metal ion in determining the coordination number achieved with these ligands, it should be remembered that the QP ligand (LXVIII), which forms only five-coordinate complexes with nickel(II) and cobalt(II) under all condi-

tions²¹⁵⁻²¹⁷, will give six-coordinate complexes $M(QP)X_2$ with iron(II), when the coordinated anions are CN^- and $NCS^{-213,214}$.

Typical linear open-chain tetradentate ligands which form five-coordinate complexes are PSSP (LXIX)^{148,243}, PNNP (LXX)^{244,245} and BDPI (LXXI)²⁴⁶. With this type of ligand the planar structure [ML] ²⁺ is alternative to the five-coordinate [MLX] ⁺ – in fact [NiL] ²⁺

and sometimes also [CoL] ²⁺ complexes have been obtained ²⁴³⁻²⁴⁶. Consistently, the planar ring-substituted CoSAlen complexes (Z-SALen shown as LXXII) have a strong tendency to increase their coordination number, as is shown by their well known oxygen-carrying ability ²⁴⁷. A form of CoSALen, inactive towards oxygen absorption, has been found to be dimeric, five-coordinate, with bridging oxygens (see scheme 9) ^{248,249}. Also five-coordinate,

dinate are the monoadducts with pyridine²⁵⁰, and some hydrate complexes²⁴⁷. The fact that most of these complexes are low-spin, even though the donor atoms are of the high-spin type, can be ascribed to apical elongation of the square pyramid in addition to the presence of a relatively strong field in the basal plane. Probably the anomalous magnetic behaviour of some of these complexes³⁰⁶ is also related to these structural factors.

Macrocyclic ligands containing nitrogen (tmac, LXXIII²⁵¹, CR, LXXIV^{252,253} and CRH, LXXV^{252,255}) or sulphur (TTP, LXXVI²⁵⁷) as donor atoms may also form five-coordinate

complexes. Again their low-spin state is ascribed to a strong apical elongation of the square pyramid; this has been confirmed by X-ray structures^{254,256} of the complexes [Ni(CR)X]⁺ and [Ni(CRH)X]⁺. It should be noted that these macrocyclic ligands do not sterically hinder the achievement of six-coordination so that, together with five-coordinate [MLX]⁺ species, six-coordinate tetragonal MLX₂ complexes have also been isolated²⁵²⁻²⁵⁷.

(b) High-spin complexes

Tetradentate ligands with the same structural characteristics as have been discussed above, but with donor atoms such as oxygen and nitrogen, form high-spin five-coordinate complexes. The stereochemical influence of the skeletal geometry and of the size of the donor groups in tripod-shaped ligands is clearly exemplified by the characteristics of the metal complexes with the following ligands which have an N₄ donor set: tren (LXXVII), Me₆ tren (LXXVIII), Et₆ tren (LXXXII), tpt (LXXX), Me₆ tpt (LXXXI), Me₂ tpma (LXXXIII) and Me₃ tpma (LXXXIII).

The first three ligands have identical chains (ethylenic), so their different coordination properties depend both on the bulkiness and the nucleophilicity of the donor groups. The

Me₆ tren ligand forms five-coordinate $[MLX]^+$ complexes with all the bivalent 3d ions^{258–263}, whereas the unsubstituted tren ligand (R=H) forms six-coordinate iron(II) and nickel(II), and five-coordinate cobalt(II), copper(II) and zinc(II) complexes, according to the specific preference of these metal ions for a given stereochemistry²⁶⁴. A further increase in the size of the donor groups, as in the ligand Et_6 tren, does not introduce appreciable changes in the trigonal bipyramidal structure of the complexes²³³. However, the steric effects show up with the nickel thiocyanate complex Ni(Et_6 tren)(NCS)₂ in that the ligand behaves as tridentate with one free arm, and both thiocyanate groups are bound to the metal²⁷³. Owing to the large coordinating power of the NCS ion, bulky or weak donor groups of tetradentate ligands are often prevented from bonding^{233,235,272,273}.

The ligands tpt and Me₆ tpt possessing trimethylenic chains are more flexible than the corresponding tren derivatives with respect to the metal-ligand moiety $^{265-267}$. For example, the N(apical)-Co-N(equatorial) angles of $[Co(tpt)X]^+$ are larger than 90° (ref. 267), whereas $[M(Me_6tpt)X]^+$ (M = Co, Ni) are presumably distorted towards a "capped" tetrahedron (N(apical)-M-N(equatorial) angles smaller than 90° (ref. 265)). In solution the $[Co(Me_6tpt)X]^+$ complexes become tetrahedral with the apical nitrogen not bound²⁶⁵.

The Me₂ tpma and Me₃ tpma are pyridyl analogues of the tren series. In this case the increasing steric requirements of the ligands result from methyl groups substituted at the 2-position of the pyridine rings. Whereas the unsubstituted tpma ligand is reported to form six-coordinate nickel complexes, five-coordinate species are preferentially obtained as the number of methyl groups is increased¹⁹⁶. However these ligands often behave as tridentate with a non-coordinating donor group, depending on the nature of the X anion¹⁹⁶.

The presence of different donor atoms in the donor set of these tetradentate ligands may give rise to either coordinative distortion or other stereochemistries depending on the donor groups involved, on the metal ion and on the X ion. For example, the N₃P ligand LXXXIV gives rise to [NiLX] + complexes which have been isolated in two isomeric forms; one form being five-coordinate high-spin and the other planar and diamagnetic with one di-

```
CH<sub>8</sub>-CH<sub>2</sub>-NEt<sub>1</sub>
N-CH<sub>3</sub>-CH<sub>2</sub>-NEt<sub>1</sub>
CH<sub>4</sub>-CH<sub>2</sub>-YPh<sub>2</sub>
(LXFX/V) Y=A5
```

ethylamino group uncoordinated 233,269 . The latter isomer is predominant in solution and its proportion varies with the X ion in the order $I \leq Br < CI$ (ref. 269). With the N_3 As ligand LXXXV only the iodo derivative is five-coordinate 233 , the chloro, bromo and thiocyanato derivatives being planar with a free diphenylarsino group 233,270 . The distinctive behaviour of the iodo complex has been related to the soft character of the iodide ion which favours the coordination of the soft arsenic atom 233 .

With cobalt, however, trigonal bipyramidal complexes have been obtained with all the above ligands.

The ligands N₃O (LXXXVI), N₃S (LXXXVII), N₂O₂ (LXXXVIII), N₂S₂ (LXXXIX),

N-O₃ (XC) and NS₃-R (XCI) are able to form cobalt and nickel complexes with several stereochemistries 273,280,281 , such as: (1) five-coordinate [MLX] + species; (2) five-coordinate ML(NCS)₂ species with the ligand acting as tridentate (in general, an ethereal or thioethereal group is not coordinated) 274,275 ; (3) six-coordinate MLX₂ species (X = halogen, NCS); (4) polymeric six-coordinate [(MLX)_n] $^{n+}$ species. From this it can be concluded that the steric hindrance of the terminal donor group decreases in the order Et₂N > SMe > OMe, since the tendency to attain six-coordination as opposed to five-coordination increases in the order (Et₆ tren) < N₃S < N₃O < N₂S₂ < N₂O₂ < NS₃-Me < N-O₃ (ref. 273); also, with the same ligand, six-coordinate nickel complexes and five-coordinate cobalt complexes are often obtained 273 . This is the case with the ligand NS₃-Me (ref. 280); however, if the size of the S-R group is increased (e.g. R = iso-Pr. tert.-Bu), five-coordinate nickel complexes are obtained 281 .

Noteworthy is the behaviour^{276,277} of the ligand bdhe (XCII), which undergoes depro-

tonation with nickel perchlorate, forming a complex with the empirical formula $Ni(L^-)$ ClO_4 . A structural analysis 276,277 has shown that five-coordination is achieved via dimerization through two oxygen bridges (see scheme 10). Such behaviour has also been encountered with bidentate ligands containing hydroxy groups (SAL-NMe₂, catec, qc).

Passing now to open-chain ligands, particularly interesting is the behaviour of the ligands tet (XCIII)^{285,286} and dacoDA (XCIV)²⁸²⁻²⁸⁴. Both form planar nickel complexes, [NiL] ²⁺

and NiL respectively, in which planarity is imposed by the conformation of the diaza-cyclohexane and diaza-cyclooctane rings. The axial addition of a fifth ligand is accompanied by

a twisting or folding of these rings in such a way that hydrogen atoms of the chain are forced into the opposite axial position, so preventing six-coordination (see schemes 11, 12) (refs. 282-286). The five-coordinate structure of these complexes with nickel and cobalt is thus determined by intrinsic geometric factors of the ligand. However, in the case of the tet derivative the NCS ion is able to form also six-coordinate NiL(NCS), presumably because of its smaller effective radius and stronger bonding ability 285,286.

TABLE 5 Five-coordinate iron(II), cobalt(II) and nickel(II) complexes with pentadentate ligands

Species ^a	Metal ion	Donor set	Physical state ^b with ref.	X-ray data ^c with ref.	Notes
(i) Low-spin complexes				· 	
M(Z-SAL-DAES)	Ni	O_2N_2S	c,s (291,292)		Z = H, 5-Br, 3-Me, 3-MeO, 3-iso-Pr
M(TAAB-LN)	Ni	Ns	c,s (293,294)		,
M(TAAB-LS)	Ni	N ₄ S	c,s (293,294)		
(ii) High-spin complexe:	S				
M(Z-SAL-R-DPT)	Co	N_3O_2	c,s (295)	(X) (295)	R = H, Me
	Nì		c,s (295)	INT(296-298)	
M(TIB-R-DPT)	Co	N_3S_2	c,s (299)		R = H, Mc
	Ni		c,s (299)		
[M(tpen)] 2+	Ni	Ns	c,s (300)	SP(301)	
M(ddta)(OH ₂)	Co Ni	N ₃ S ₂	c (302) c (302)		

 $[\]frac{a}{b}$ The ligand notation is defined in the Abbreviations list. $\frac{b}{c}$ denotes crystals, a solution.

(v) Pentadentate ligands

(a) Low-spin complexes

Although several types of ligand skeletons may be thought of for pentadenate ligands 290, their ability to form five-coordinate complexes (see Table 5) is restricted by the following conditions: (1) the intraligand repulsion effects must be low enough to allow coordination of all five donor groups to the central metal ion; (2) the crowding around the metal ion must be large enough to prevent a sixth donor group from bonding. Taking into account the difficulties in synthesizing such ligands, it can be well understood why five-coordinate complexes with pentadenate ligands are not numerous.

^C Symbols for complete X-ray structures: SP denotes square pyramid and INT intermediate structure. Indirect structural evidence (2.g., isomorphism with compounds of known structure) is indicated by (X).

Low-spin five-coordinate structures have been proposed until now only for the complexes with Z-SAL-DAES (XCV) (refs. 291, 292), TAAB-LN (XCVI), and TAAB-LS (XCVII) (refs. 293, 294) whose donor atoms are mostly of high-spin character. The low-spin state

$$Z \leftarrow \begin{pmatrix} CH_1 - H_2 & CH_2 - H_3 \\ CH_2 - H_3 & CH_4 - H_4 \\ CH_2 - H_4 & CH_4 - H_4 \\ CH_2 - H_4 & CH_4 - H_4 \\ CH_2 - H_4 & CH_4 - H_4 \\ CH_4 - H_4 \\ CH_4 - H_4 & CH_4 - H_4 \\ CH_4 - H_4 \\ CH_4 - H_4 & CH_4 - H_4 \\ CH_4 - H_4 \\ CH_4 - H_4 \\ CH_4 - H_4$$

can therefore be accounted for by partial coordination of the apical donor atom of an approximate square pyramidal geometry. In the case of Ni(Z-SAL-DAES), however, some paramagnetism has been observed so that the possibility of spin-isomerism cannot be ruled out²⁹². On the other hand the analogous Z-SAL-DIEN ligand, where sulphur is replaced by an NH group, forms only planar complexes with nickel, with the central nitrogen not bound ²⁹². The complexes Ni(TAAB-LN) and Ni(TAAB-LS) are obtained by alcoholysis of the imino groups of the planar complex Ni(TAAB) with the diols bis(2-hydroxyethyl)methylamine or bis(2-hydroxyethyl)sulphide^{293,294}. Although the apical nitrogen or sulphur is presumably weakly coordinated, they are believed to be responsible for the template effect leading to the "basket-like" ligands²⁹⁴.

(b) High-spin complexes

Reaction of ring-substituted salicylaldehyde or 2-thiolbenzaldehyde with bis(3-amino-propyl)alkylamines yields the pentadentate ligands Z-SAL-R-DPT (XCVIII)²⁹⁵⁻²⁹⁸ and TIB-R-DPT (XCIX)²⁹⁹. In these ligands, in contrast to the above-mentioned Z-SAL-DIEN,

the flexibility of the trimethylene chains allows the central donor atom to coordinate easily in the axial position of a trans quasi-planar bis-salicylideneiminate-type moiety. As a result of this coordination, the R group may point towards either of the two aromatic rings (see scheme 13). The structure of Ni(SAL-Me-DPT) shows two different N(R)-Ni-O angles (106, 113°) so that the two aromatic groups are geometrically non-equivalent^{256,297}. Two isomeric forms are thus obtained, differing in that the R group points towards either the first SAL group (angle of 106°) or the other SAL group²⁹⁷. In solution, two PMR signals for each aromatic position are observed^{298a}, which can be accounted for by either of two

alternative models: (1) two different N(R)-Ni-O angles but with the R group pointing towards one aromatic group only (if both isomers were present, four signals for each position would be expected): (2) equal (or averaged) N(R)-Ni-O angles, the non-equivalence of the SAL groups resulting from the fixed position of the R group (if this were averaged too, one signal for each position would be expected)²⁹⁹.

Since the PMR spectrum of the analogous TIB derivatives shows only one signal for each aromatic position at higher temperature, it has been suggested that model (2) is the more probable, with a ligand conformational rearrangement which allows the two aromatic moieties to average their non equivalence during the PMR resonance time²⁹⁹.

The ligand tpen (C) should also be mentioned since it is the only reported pentadentate

ligand which gives a cationic complex, [Ni(tpen)] 2+, with a square pyramidal structure 300, 301.

TABLE 6

Spin-isomeric five-coordinate iron(II), cobalt(II) and nickel(II) complexes

Species ^a	Me tal ion	Donor set	Physical state ^b with ref.	X-ray data ^C with ref.	Notes
M(pnp)X ₂	Fe	P2NX2	c,s (161)	- <u>-</u>	X = I, NCS
(pb)2	Co		c,s (161,303)		$X = B_{I}, I$
	Ni		c,s (161,304)		X = CI
M(pmp)X2	Co	P_2NX_2	c,s (162)		X = Br, NCS
	Ni		c,s (162)		X = NCS
M(R-nnp)X2	Co	N_2PX_2	c (205,206)	SP(207)	R = H, X = NCS
M(SALoph)B	Co	$N_2O_2(B)$	c,s (305,306)		B = R-py, R-imz,
					PPh ₃
M(SALen)B	Co	$N_2O_2(8)$	c,s (306)		B = R-Py, R-imz

 $^{^{}a}_{L}$ The figand notation is defined in the Abbreviations list.

(vi) Spin-isomeric complexes

As outlined in the Introduction, the factors determining the spin state in five-coordinate complexes are the nature of the donor groups, and the geometrical or coordinative distortions, if any, of the chromophore⁵. When a proper balance of these two factors produces

b e denotes crystals, s solution.

^C SP denotes square pyramidal structure.

an energy gap of the order of magnitude of kT between the lowest high- and low-spin levels, the population distribution over the two levels is temperature-dependent, and so are the magnetic properties. Under these conditions, the complexes are said to show spin-equilibrium, or spin-isomerism^{307,308}. In order to locate the magnetic cross-over range between high- and low-spin complexes, and possibly to obtain spin-isomeric complexes, the donor groups in five-coordinate complexes have to be systematically varied. We have already seen that the semi-empirical parameters of the donor atoms, i.e. the overall electronegativity $(\Sigma \chi)$ and the overall nucleophilicity (Σn^0) , correlate well with observed spin states^{5,11}. However, it is not possible, at this time, to predict the distortions which may occur when the five-coordinate chromophore is formed and which have a direct effect on the spin state. Thus, even though a donor set having a $\Sigma \chi$ or Σn^0 value close to the crossover range is chosen, the formation of a spin-isomeric complex is still a matter of chance. For example, the complex $\{Co(NP_3)l\}^+$ is low-spin when the counteranion is I^- , BF_4^- or PF_6^- , but high-spin when the counteranion is BPh₄ - (refs. 226-231). The former complexes have a definite square pyramidal geometry 227,228, whereas the latter is trigonal bipyramidal with a very large tetrahedral distortion (the Co-N(apical) distance is 2.74 Å and the N(apical) -Co-P angle is 74°) which accounts for the high-spin state 5,278,309. A temperature-dependent configurational equilibrium between the two limiting geometries exists in solution, with which a change in spin-state is associated 226,308.

Ligands giving rise to five-coordinate complexes which are spin-isomeric in the solid state are the tridentate pnp (CI), pnp (CII), and H-nnp (XLV). Among the M(pnp)X₂ complexes,

the spin state is determined by the nature of X. The nickel complexes are low-spin when X = Br, I, whereas the chloro derivative shows spin equilibrium 161,304 ; the cobalt chloro derivative is high-spin whereas the bromo and iodo derivatives are spin-isomeric 161,303 ; finally the iodo complex of iron shows spin equilibrium, whereas the chloro and bromo derivatives are high-spin 161 . Complexes of the pmp ligand show similar behaviour, although spin equilibrium does not necessarily occur in the same halo derivatives as those of pnp 162 .

Perhaps the most thoroughly investigated spin-isomeric complex is $Co(H-nnp)(NCS)_2$. It is essentially low-spin at 77°K and high-spin at 418°K (ref. 205). The continous variation of the magnetic properties is associated with changes in the visible and solid state infrared spectrum, the latter particularly in the $\nu(N-H)$ and $\nu(C=N)$ regions^{205,308}. Two separate sets of bands, whose relative intensities are temperature-dependent, are observed in each region. This suggests the presence of two molecular species (e.g. high- and low-spin species differing in bond distances) in equilibrium^{205,206,308}. However, an X-ray structure of this complex at room temperature has shown only one kind of molecule with normal thermal parameters²⁰⁷. This apparent contradiction points out the lack of any completely

satisfying model in this field, and indicates the need for further work to clarify the current debate on spin-isomeric complexes.

In contrast, the analogous $Co(Me-nnp)(NCS)_2$ complex is fully high-spin²⁰⁶. The major structural difference between these two complexes is that the latter complex is closer to a tetrahedrally distorted trigonal bipyramid, whereas the former one is closer to a slightly elongated square pyramid²⁰⁷. The influence of the geometry on the spin-state thus parallels that observed for the $[Co(NP_3)1]$ Y series⁵.

It is quite difficult to rationalize, in terms of both structural and ligand field parameters, the behaviour of the five-coordinate monoadducts of Co(SALen) (SALen shown as LXXII) (ref. 306) and Co(SALoph) (SALoph shown as CIII)^{305,306}.

These complexes are found to be high-spin, low-spin, or spin-isomeric, depending on both the salycilaldimine substituent and the fifth (axial) donor group 305,306. Probably the relation between the donor properties of the axial and planar donors, although not completely understood, accounts for the observed magnetic properties.

C. RECENT ADVANCES IN SPECTROSCOPY AND MAGNETISM OF FIVE-COORDINATE NICKEL(II) AND COBALT(II) COMPLEXES

As soon as spectral data became available for five-coordinate complexes, ligand field calculations were performed in an attemp, to assign the spectral bands and to account for the magnetic properties³¹⁰⁻³¹⁵. Since the complexes have a symmetry lower than cubic, two radial integral parameters (B_2 and B_4 in the crystal field model, or equivalent parameters in other models) are necessary to describe the effects of the ligand field, in addition to the usual nephelauxetic parameter². The B_4 parameter can be related to the octahedral Dq through the relation $Dq = \mu B_4/6$, and this value can be considered to be transferable to different symmetries for the same donors². The B_2 integral must be parametrized, as the B_2/B_4 ratio is expected to vary in the range 1-5 (ref. 316).

Ligand field calculations on five-coordinate Fe^{II}, Co^{II} and Ni^{II} complexes were first performed by Ciampolini et al.³¹⁰⁻³¹² and Venanzi and co-workers^{313,314}, for high-spin and low-spin complexes respectively. Numerous contributions have been made to interpret more individual cases. They are reported in the excellent reviews by Furlani^I and Ciampolini². Recent papers by Gray and co-workers^{317,318} and Ferraro et al.^{319,320} discuss the temperature dependence and the pressure dependence of ligand field spectra of low-spin five-coordinate nickel(II) complexes.

Quite recently, single crystal spectral and magnetic measurements have been carried out

on some representative high-spin nickel(II) and cobalt(II) complexes^{263,321-328}. Since these experiments establish the validity of the ligand field model in this class of complexes and definitely confirm the assignments proposed, we shall discuss them in some detail.

(i) High-spin nickel(II) complexes with square pyramidal geometry

An energy level diagram for the triplet terms of the nickel(II) ion surrounded by five equivalent dipoles arranged in a square-pyramidal geometry is shown in Fig. 4, together with the effects on the energy levels of varying the B_2/B_4 radial integral ratio, the Dq(api-

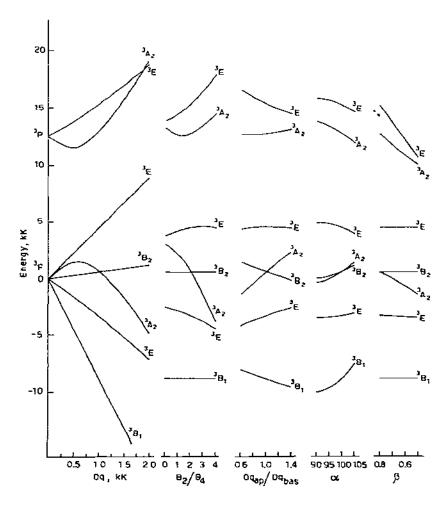


Fig.4. Energy level diagram for a nickel(II) ion in a ligand field of $C_{4\nu}$ symmetry $(B_2/B_4 = 2, \alpha = 100^{\circ}, \beta = 0.80, Dq_{ap} = Dq_{bas})$. From left to right, the effect of changing the B_2/B_4 ratio, the Dq_{ap}/Dq_{bas} ratio, the apical angle α and the nephelauxetic parameter β (for $Dq_{bas} = 1.0$ kK).

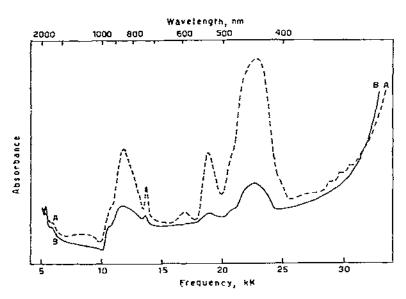


Fig.5. Single-crystal polarized electronic spectrum of the [Ni(Ph₂MeAsO)₄NO₃]NO₃ complex at 80° K. A, 1 polarized; B, 1 polarized) (ref. 321).

cal)/Dq(basal) ratio, the apical angle α and the nephelauxetic parameter β (ref.322). The ground state is an orbitally non-degenerate 3B_1 level which gives rise to transitions either not allowed or normally polarized (with respect to the C_4 axis).

TABLE 7

Observed and calculated band energies for [Ni(Ph₂MeAsO)₄NO₃]NO₃ (ref.^a)

Assignment (C _{4v})			Frequency (kK)	Calculated (C4y)
		Polarization (C_{4v})	Observed	
3 _{B1} →	³ E(F)	Perpendicular	(< 5.5)	3.89
- •	$^{3}A_{2}(F)$	Forbidden	8-2	8.33
	$^{3}B_{2}(F)$	Forbidden	9.3	9.14
3 _E (${}^{3}B_{2}(F)$ ${}^{3}E(F)$	Perpendicular	11.9	11.57
	$^3A_2(P)$	Forbidden	19.0	19.29
	$^{3}E(P)$	Perpendicular	22.9	22.56

^a Parameter values: $Dq_{bas} = 1.05 \text{ kK}$, Cp/Dq = 3.0, $Dq_{ap}/Dq_{bas} = Cp_{ap}/Cp_{bas} = 0.8$, B = 0.85 kK, $\alpha = 105^{\circ}$ (ref. 321).

Single-crystal polarized spectra of the [Ni(Ph₂MeAsO)₄NO₃] NO₃ complex are shown in Fig.5, and the proposed assignment is reported in Table 7 (ref. 321). The polarization properties agree satisfactorily with those expected. Because of the large number of parameters involved in the calculations, there are several combinations of parameter values which

give a reasonable match between observed and calculated frequencies. However a critical examination of the dependence of the energies on the variation of parameters, and of the chemical significance of the parameters, may be of help in choosing the most reasonable parameter set. The energy fit reported in Table 7 has been obtained with the following set of parameters: Dq(basal) = 1.05 kK; $\alpha = 105^\circ$; $\beta = 0.82$; $B_2/B_4 = 1.75$; Dq(apical)/Dq(basal) = 0.8. It should be noted that the apical angle has also been parametrized in that it may be different from that actually found by X-ray analysis owing to second-nearest-neighbour effects³²¹.

A 3B_1 ground level should produce a spin-only value for the magnetic moment. However, this level is mixed with the excited E levels through spin-orbit coupling. A complete treatment inclusive of spin-orbit coupling was performed by Gerloch, Lewis, et al., to account for the magnetic anisotropy of the $\{Ni(Ph_2MeAsO)_4NO_3\}NO_3$ complex 321 . A partial energy level scheme resulting from successive spin-orbit and Zeeman perturbations is presented in Fig.6. According to this model 322 , the molar susceptibility components (neglecting TIP contributions) are given by:

$$\chi_{ij} = \frac{N\beta^2}{kT} \frac{8e^{-\delta/kT}}{1 + 2e^{-\delta/kT}}$$

$$\chi_{\perp} = N\beta^2 \frac{4A^2}{\delta} \frac{1 - e^{-\delta/kT}}{1 + 2e^{-\delta/kT}}$$

where

$$\delta = \left[\frac{(\sqrt{5}(c_1) + \sqrt{3}(c_2))^2}{\Delta_1} + \frac{(\sqrt{5}(c_2) + \sqrt{3}(c_1))^2}{\Delta_2} \right] \lambda^2$$

and

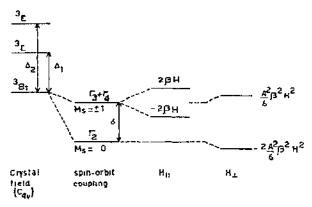


Fig.6. Splitting of the 3B_1 term under the effect of successive spin—orbit coupling and magnetic field perturbations 322 .

$$A = \sqrt{2} - \frac{k\lambda}{\sqrt{2}} \left[\frac{(\sqrt{5}(c_1) + \sqrt{3}(c_2))^2}{\Delta_1} + \frac{5c_2^2}{\Delta_2} - 3c_1^2 \right]$$

 $(c_1 \text{ and } c_2 \text{ are diagonalization coefficients}).$

These formulae probably overestimate the second-order perturbation because of the proximity of the excited levels. However they show that a large orbital contribution is present, which may provide $\mu_{\rm eff}$ values as large as 4.0 B.M. In fact the magnetic moments for square pyramidal nickel(II) magnetophores⁵⁶⁻⁶² range from 3.3 to 3.7 B.M.

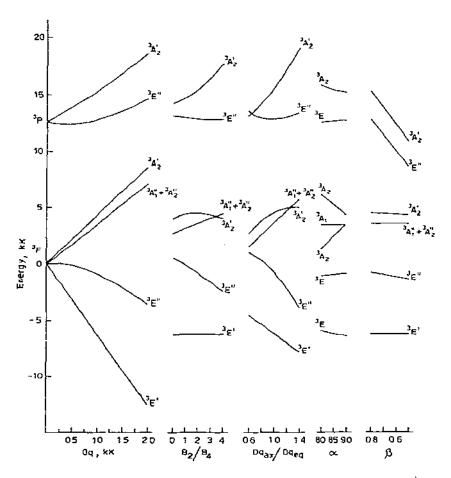


Fig.7. Energy level diagram for a nickel(II) ion in a ligand field of D_{3l_1} symmetry $(B_2/B_4 = 2, \beta = 0.80, Dq_{ax} = Dq_{eq})$. From left to right, the effect of changing the B_2/B_4 ratio, the Dq_{ax}/Dq_{eq} ratio, the apical angle α and the nephelauxetic parameter β (for $Dq_{eq} = 1.0$ kK).

(ii) High-spin nickel(II) complexes with trigonal bipyramidal geometry

An energy level diagram 263 for the triplet terms of nickel(II) in D_{3h} symmetry is given in Fig.7, together with the effects of varying: (a) the B_2/B_4 ratio; (b) the Dq(axial)/Dq (equatorial) ratio; (c) the apical angle α ; and (d) the nephelauxetic parameter β . Spectra of chromophores with rigorous D_{3h} symmetry have not yet been described. However, the [Ni(Me₆ tren)X] X complexes exhibit a crystallographic C_3 symmetry, with an apical angle of 84° for the bromo derivative 252 . Such a symmetry requires a 3E ground state. Unfortunately the halide complexes belong to a monometric crystallographic group 262 , therefore anisotropic measurements cannot be performed on these complexes. In contrast, the crystals of [Ni(Me₆ tren)NCS] NCS.aq are orthorhombic, and the chromophore may be regarded as having approximate D_{3h} symmetry 263 .

The single-crystal polarized spectra for this complex are reported in Fig.8, together with the proposed assignment²⁶³, which agrees with the assignment previously proposed by Ciampolini et al.³¹¹, and later by Wood³¹⁵. For the ³E ground level, under spin—orbit coupling and Zeeman effects (Fig.9) (ref. 323), the following susceptibility components are calculated³²³, neglecting TIP contributions.

$$\chi_{\parallel} = \frac{N\beta^2}{3\kappa T} \frac{12(4e^{2\lambda/\kappa T} + 1)}{e^{2\lambda/\kappa T} + 1 + e^{-2\lambda/\kappa T}}$$

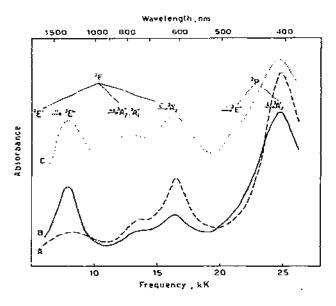


Fig. 8. Single-crystal polarized electronic spectrum (A, mostly \perp polarized; B, mostly \parallel polarized) and diffuse reflectance spectrum (c) of the [Ni(Me₆ tren)NCS] NCS.H₂O complex, with the proposed assignment in D_{3h} symmetry (for $B_2/B_4 = 1.5$, $Dq_{ax} = Dq_{eq} = 1.25$ kK, $\rho = 0.75$) (ref. 263).

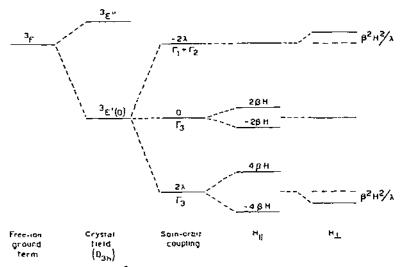


Fig. 9. Splitting of the ${}^3E'$ term under the effect of successive spin-orbit coupling and magnetic field perturbations 324 .

$$\chi_1 = \frac{2N\beta^2}{\lambda} - \frac{e^{2\lambda/\kappa T} - e^{-2\lambda/\kappa T}}{e^{2\lambda/\kappa T} + 1 + e^{-2\lambda/\kappa T}}$$

These formulae produce magnetic moments larger than observed. This has been attributed³²³ to $E' \sim E''$ mixing under C_{31} symmetry, the states of E'' being eigenfunctions with $M_L = \pm 1$ while the ground state eigenfunctions have $M_L = \pm 2$. As an alternative, the C_3 symmetry of the halo complexes may be the result of a dynamical distortion which would allow for the ground state to be split²⁶³.

(iii) High-spin nickel(II) complexes with intermediate geometry

Chromophores with geometries intermediate between the TBP and the SP are quite numerous. Unfortunately they are difficult to handle owing to their low symmetry. An energy level diagram³²⁴ for $C_{2\nu}$ symmetry is shown in Fig.10. The N_3O_2 chromophore of the NiSAL-MeDPT complex has an approximate $C_{2\nu}$ symmetry if the aliphatic chains and the salicylaldimine groups are neglected. The single-crystal polarized spectra of this complex³²⁴ are shown in Fig.11. The polarization properties are quite neat; however, they do not lead to a straightforward assignment. Table 8 reports an assignment based on the diagrams of Fig. 10 the values of the angles β averaged to $110^{\circ*}$.

Magnetic moment values of this type of compound are ca. 3.3 B.M., i.e. generally lower that those found for complexes with higher symmetries.

^{*} A paper discussing the spectral assignment of NiSAL-MeDPT has recently appeared 333 . A $^{3}B_{2}$ ground level in $C_{2\nu}$ symmetry has been proposed in order to account for the polarization properties. However, the correlation between D_{3h} and $C_{4\nu}$ symmetries requires, by symmetry restrictions, an A_{1} ground level (see Fig. 10).

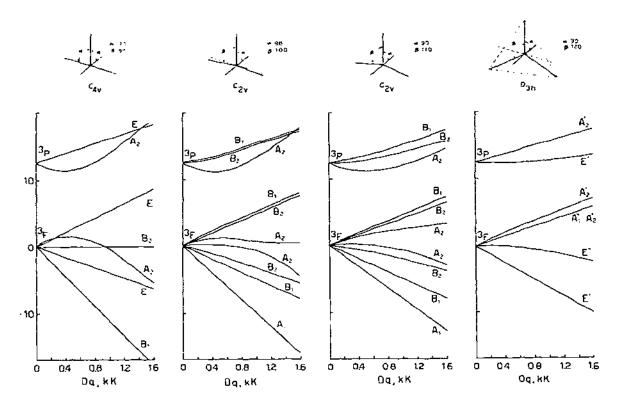


Fig.10. Electronic energy levels for the nickel(II) ion in $C_{4\nu}$ (left), D_{3l} (right) and intermediate $C_{2\nu}$ symmetries, $(B_2/B_4=2)$ (ref. 324).

TABLE 8 Observed and calculated band energies for [NiSAL-MeDPT] (ref. 4)

		Frequency (kK)		
Assignment	t (C _{2ν})	Observed	Calculated $(C_{2\nu})$	
$^{3}A_{1} \rightarrow$	$^{3}B_{1}(F)$	(< 5.0)	4.0	
	$^{3}B_{2}(F)$	8.4	7.6	
	$^{3}A_{2}(F)$	10.0	8.8	
	$^{3}A_{2}(F)$	12.0	13.4	
	$^3B_2(F)$	1601	15.8	
	$^3B_1(F)$	16.8 (16.6	
	$^{3}A_{2}(P)$	ſ	23.8	
	$^{3}B_{2}(P)$	b {	25.2	
	$^{3}B_{1}(P)$	(26.6	

^a Parameter values: Dq = 1.3 kK, $B_2/B_4 = 2$, $\beta = 110^\circ$.

^b Masked by charge transfer³²⁴.

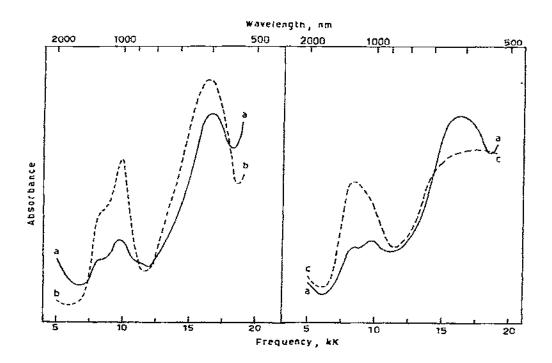


Fig. 11. Single-crystal polarized electronic spectrum of the NiSAL-MeDPT complex along a, b, and c^* crystallographic directions corresponding to y, z, and x polarizations, respectively (ref. 324).

(iv) High-spin cobalt(II) complexes with square pyramidal geometry

An energy level diagram for C_{4v} cobalt complexes is shown in Fig.12, together with the effects of varying the ligand field parameters³²². These diagrams show that there are several levels quite close to the ground level, which can be either the 4A_2 or the 4E . This situation renders more difficult the assignment of the spectra of square pyramidal complexes owing to the uncertainty of the ground level and to the mixing of these levels under the spin—orbit operator. A tentative assignment was first proposed for the $[Co(Ph_2MeAsO)_4 ClO_4] ClO_4$ complex on the basis of the reflectance spectrum alone, assuming a 4A_2 ground level³¹². This assignment was eventually confirmed on the basis of single-crystal polarized spectra of $[Co(Ph_2MeAsO)_4NO_3]NO_3$ (ref. 325) (Fig.13). However, the polarization properties are not very marked, presumably because the A and E levels are very close, perhaps within 1 kK, and therefore strongly mixed via λ L.S.

Even the single-crystal anisotropic magnetic properties have been accounted for on the basis of a thermal population of the two levels. Reasonable parameters³²⁵ which can describe the CoO₅ chromophore are: Dq(basal) = 1.05 kK, Dq(apical)/Dq(basal) = 0.85, $\beta = 0.87$, $\alpha = 106.5^{\circ}$, $B_2/B_4 = 1.93$, $k = \lambda/\lambda_0 = 0.82$.

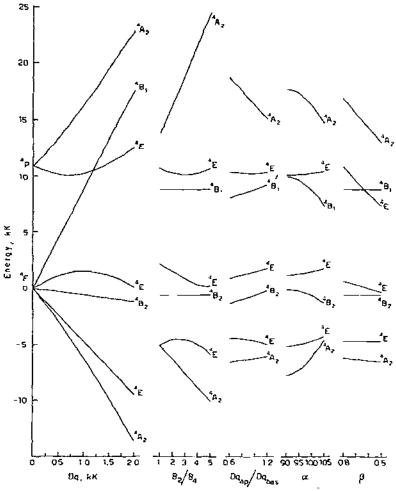


Fig. 12. Energy level diagram for a cobalt(II) ion in a ligand field of C_{4p} symmetry ($B_2/B_4 = 2$, $\alpha = 100^\circ$, $\beta = 0.75$, $Dq_{ap} = Dq_{bas}$). From left to right, the effect of changing the B_2/B_4 ratio, the Dq_{ap}/Dq_{bas} ratio, the apical angle α and the nephelauxetic parameter β (for $Dq_{bas} = 1.0$ kK) (ref. 322).

(v) High-spin cobalt(II) complexes with trigonal bipyramidal geometry

An energy level diagram³²⁶ for cobalt(II) in D_{3h} symmetry is shown in Fig. 14. Trigonal bipyramidal cobalt complexes of highest symmetry are the Me₆ tren halo derivatives, which, however, are crystallographically monometric²⁶¹. The [Co(Me₆ tren)NCS] NCS.aq complex, isostructural with the analogous nickel complex, has been investigated using polarized light ³²⁶. The polarized spectra shown in Fig. 15 can be assigned on the basis of an effective $C_{3\nu}$ symmetry. In the present case the assignment is rather straightforward as shown in Table 9. Reasonable agreement has been obtained for B_2/B_4 ratios ranging from 1–1.7, $\beta = 0.65$ —

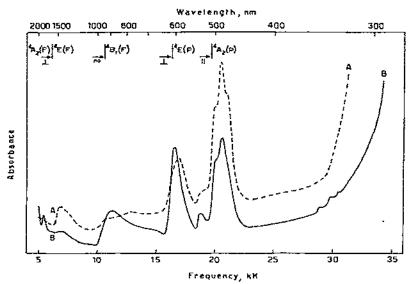


Fig.13. Single-crystal polarized electronic spectrum of the [Co(Ph₂MeAsO)₄NO₃]NO₃ complex at 80° K (A, # polarized; B, 1 polarized), with the proposed assignment in C_{4y} symmetry (for $Dq_{bas} = 1.05$ kK; $Dq_{ap}/Dq_{bas} = 0.9$; $B_2/B_4 = 1.75$; $\alpha = 108^\circ$; $\beta = 0.87$) (ref. 325).

TABLE 9

Observed and calculated band energies for [Co(Me6 tren)NCS] NCS.H₂O^a

			Frequency (kK)		
Assignment (C _{3y})		Polarization (C_{3y})	Observed	Calculated $(C_{3\nu})$	
4 _{A2} →	⁴ A ₁ (F)	Forbidden	(< 4.0)	3.0	
-	$^{4}A_{2}(F)$	Parailel	(< 4.0)	3.6	
	$^{4}E(F)$	Perpendicular	5.8	5.2	
$^4E(F)$	$^4E(F)$	Perpendicular	14.8	14.8	
	$^{4}A_{2}(P)$	Parallel	16.5	16.9	
	$^4E(P)$	Perpendicular	21.0	20.9	

^a Parameter values: $Dq_{eq} = 1.2 \text{ kK}$, $B_2/B_4 = 1.0$, $Dq_{ax}/Dq_{eq} = 1.05$, $\alpha = 85^{\circ}$, $\beta = 0.70$ (ref. 326).

0.75, $\alpha = 80-85^{\circ}$; Dq(axial)/Dq(equatorial) = 0.95-1.05; Dq(equatorial) = 1.2-1.3 kK (ref. 326). The values of these parameters agree well with those of nickel and are quite consistent with those used for octahedral cobalt and nickel complexes with nitrogen donor atoms³²⁶.

As mentioned earlier, high-spin trigonal bipyramidal cobalt complexes are often distorted towards the tetrahedron. The effect of such a distortion on the energy levels is shown on the right hand side of Fig.14. There is a general compression of the levels and the order

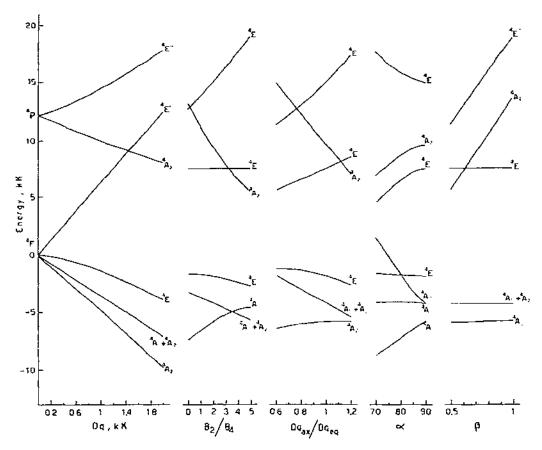


Fig.14. Energy level diagram for a cobaltium ion in a ligand field of D_{3h} symmetry $(B_2/B_4 = 2, \beta = 0.75, Dq_{ax} = Dq_{eq})$. From left to right, the effect of changing the B_2/B_4 ratio, the Dq_{ax}/Dq_{eq} ratio, the apical angle α and the nephelauxetic parameter β (for $Dq_{eq} = 1.2$ kK) (ref. 326).

of some of them is inverted. This effect has been verified in the spectra of the $[Co(NP_3)Br]$ PF₆ complex which is highly distorted towards the tetrahedron (Fig. 16) (refs. 278, 327).

The effective magnetic moments of this class of complexes range between 4.3–4.6 B.M., owing to the orbital contribution of the excited E levels³²⁸. A partial energy level scheme under spin—orbit and Zeeman operators is shown in Fig.17 (ref. 322). The main susceptibilities (neglecting TIP contribution) and g values are given by

$$\chi_{\parallel} = \frac{N\beta^{2}}{\kappa T} \frac{1 + 9e^{-\delta/\kappa T}}{1 + e^{-\delta/\kappa T}} \qquad \left(\delta = \frac{12\lambda^{2}}{\Delta}\right)$$

$$\chi_{\perp} = N\beta^{2} \frac{\left(1 - \frac{6\kappa\lambda}{\Delta}\right)^{2} \left[\frac{4}{\kappa T} + \frac{6}{\delta}\left(1 - e^{-\delta/\kappa T}\right)\right]}{1 + e^{-\delta/\kappa T}}$$

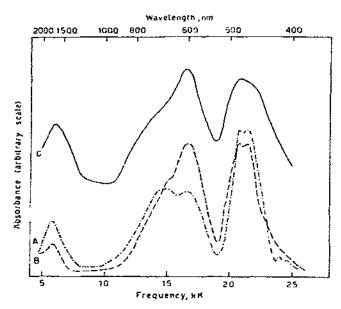


Fig.15. Single crystal polarized electronic spectrum (A, mostly 1 polarized; B, mostly $\mathbb F$ polarized) and diffuse reflectance spectrum (C) of the [Co(Me6 tren)NCS] NCS.H₂O complex 326 .

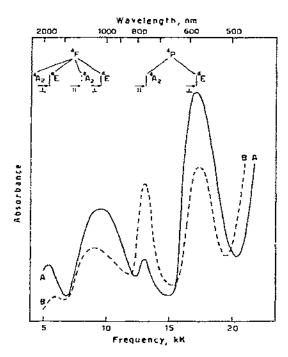


Fig. 16. Single crystal polarized electronic spectrum of the $[Co(NP_3)Br]PF_6$ complex (A, mostly 1 polarized; B, mostly 1 polarized) with the proposed assignment in $C_{3\nu}$ symmetry 327.

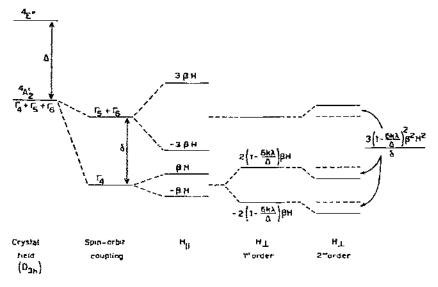


Fig. 17. Splitting of the 4A_2 term under the effect of successive spin-orbit coupling and magnetic field perturbations 322 .

$$g_{\parallel} = 2$$

$$g_{\perp} = 2 \left(1 - \frac{6\kappa\lambda}{\Delta} \right)$$

Since the energy separation between the ground level and the excited E levels decreases with the axial donor strength, the $\mu_{\rm eff}$ is expected to vary in the order I > Br > Cl for the Me₆ tren complexes, as it has, in fact, been found to do.

REFERENCES

- 1 C. Furlani, Coord. Chem. Rev., 3 (1968) 141.
- 2 M. Ciampolini, Struct. Bonding (Berlin), 6 (1969) 52.
- 2a J.S. Wood, Progr. Inorg. Chem. 16 (1972) 227.
- L. Sacconi, Pure Appl. Chem., 17 (1968) 95.
- 4 L. Sacconi, Transition Metal Chem., 4 (1968) 199.
- 5 L. Sacconi, Coord. Chem. Rev., 8 (1972) 351.
- 6 E.L. Muetterties and R.A. Schunn, Quart. Rev., Chem. Soc., 20 (1966) 245.
- 7 P.L. Orioli, Coord, Chem. Rev., 6 (1971) 285.
- 8 R.J. Gillespie, J. Chem. Soc. London, (1963) 4672.
- J. Zemann, Z. Anorg. Allg. Chem., 324 (1963) 241.
- 10 B.J. Hathaway and D.E. Billing, Coord. Chem. Rev., 5 (1970) 143.
- 11 L. Sacconi, J. Chem. Soc. A, (1970) 248.
- 12 K. Issleib and E. Wenschuch, Z. Anorg, Allg, Chem., 305 (1960) 15.
- 13 J.A. Bertrand and D.L. Plymale, Inorg. Chem., 5 (1966) 879.
- 14 R.G. Hayter, Inorg. Chem., 2 (1963) 932.

- 15 T.R. Dick and S.M. Nelson, Inorg. Chem., 8 (1969) 1208.
- 16 K.A. Jensen and O. Dahl, Acta Chem. Scand., 22 (1968) 1044.
- 17 B.B. Chastain, D.W. Meek, E. Billig, J.E. Hix, Jr. and H.B. Gray, Inorg. Chem., 7 (1968) 2412.
- 18 O. Dahl, Acta Chem. Scand., 23 (1969) 2342.
- 19 P. Rigo, M. Bressan and A. Turco, Inorg. Chem., 7 (1968) 1460.
- 20 E.A. Rick and R.L. Pruett, Chem. Commun., (1966) 697.
- 21 P. Rigo, C. Pecile and A. Turco, Inorg. Chem., 6 (1967) 1636.
- 22 B.B. Chastain, E.A. Rick, R.L. Pruett and H.B. Gray, J. Amer. Chem. Soc., 90 (1968) 3994.
- 23 K.J. Coskran, J.M. Jenkins and J.G. Verkade, J. Amer. Chem. Soc., 90 (1968) 5437.
- 24 J.K. Stalick and J.A. Ibers, Inorg. Chem., 8 (1969) 1084.
- 25 J. Chatt and B.L. Shaw, J. Chem. Soc., London, (1960) 1718.
- 26 M. Nicolini, C. Pecile and A. Turco, J. Amer. Chem. Soc., 87 (1965) 2379.
- 27 M. Nicolini, C. Pecile and A. Turco, Coord. Chem. Rev., 1 (1966) 133.
- 28 T. Boschi, M. Nicolini and A. Turco, Coord. Chem. Rev., 1 (1966) 269.
- 29 E.C. Alyea and D.W. Meek, J. Amer. Chem. Soc., 91 (1969) 5761.
- 30 J.K. Stalick and J.A. Ibers, fnorg. Chem., 8 (1969) 1090.
- 31 K.J. Coskran, T.J. Huttemann and J.G. Verkade, Advan. Chem. Ser., 62 (1967) 590.
- 32 T.J. Huttemann, B.M. Foxman, C.R. Sperati and J.G. Verkade, Inorg. Chem., 4 (1965) 950.
- 33 E.F. Riedel and R.A. Jacobson, Inorg. Chim. Acta, 4 (1970) 407.
- 34 J.W. Collier and F.G. Mann, J. Chem. Soc., London, (1964) 1815.
- 35 J.W. Collier, F.G. Mann, D.G. Watson and H.R. Watson, J. Chem. Soc., London, (1964) 1803.
- 36 D.W. Allen, F.G. Mann and I.T. Millar, Chem. Ind. (London), (1966) 2096.
- 37 D.W. Allen, I.T. Millar and F.G. Mann, J. Chem. Soc. A. (1969) 1101.
- 38 D.W. Allen, F.G. Mann, I.T. Millar, H.M. Powell and D.J. Watkin, Chem. Commun., (1969) 1004.
- 39 H.M. Powell, D.J. Watkin and J.B. Wilford, J. Chem. Soc. A, (1971) 1803.
- 40 D.W. Allen, F.G. Mann and I.T. Millar, J. Chem. Soc. C. (1971) 3937.
- 41 T. Nowlin and K. Cohn, Inorg. Chem., 10 (1971) 280.
- 42 T. Nowlin and K. Cohn, Inorg. Chem., 11 (1972) 560.
- 42a T. Nowlin, S. Subramanian and K. Cohn, Inorg. Chem., 11 (1972) 2907.
- 43 P. Rigo and M. Bressan, Inorg. Chem., 11 (1972) 1314.
- 44 A. Bertacco, U. Mazzi and A.A. Orio, Inorg. Chem., 11 (1972) 2547.
- 45 J.J. Alexander and H.B. Gray, J. Amer. Chem. Soc., 89 (1967) 3356.
- 46 K.G. Caulton, Inorg. Chem., 7 (1968) 392.
- 47 J.M. Pratt and R.J.P. Williams, J. Chem. Soc. A, (1967) 1291.
- 48 D.A. White, A.J. Solodar and M.M. Baizer, Inorg. Chem., 11 (1972) 2160, and references therein.
- 49 R.L. McCullough, L.H. Jones and R.A. Penneman, J. Inorg. Nucl. Chem., 13 (1960) 286.
- 50 J.S. Coleman, H. Petersen, Jr. and R.A. Penneman, Inorg. Chem., 4 (1965) 135.
- 51 K.N. Raymond and F. Basolo, Inorg. Chem., 5 (1966) 949.
- 52 W.C. Anderson and R.P. Harris, Inorg. Nucl. Chem. Lett., 2 (1966) 315.
- 53 K.N. Raymond, P.W. Corfield and J.A. Ibers, *Inorg. Chem.*, 7 (1968) 1362.
- 54 A. Terzis, K.N. Raymond and T.G. Spiro, Inorg. Chem., 9 (1970) 2415.
- 54a J.M. Pratt and P.R. Silverman, Chem. Commun., (1967) 117.
- 54b J.M. Pratt and P.R. Silverman, J. Chem. Soc. A, (1967) 1286.
- 55 S.H. Hunter, R.S. Nyholm and G.A. Rodley, Inorg. Chim. Acta, 3 (1969) 631.
- 56 J. Lewis, R.S. Nyholm and G.A. Rodley, Nature (London), 207 (1965) 72.
- 57 P. Pauling, G.B. Robertson and G.A. Rodley, Nature (London), 207 (1965) 73.
- 58 D.M.L. Goodgame, M. Goodgame and P.J. Hayward, J. Chem. Soc. A, (1970) 1352.
- 59 F. Mani, Inorg. Nucl. Chem. Lett., 7 (1971) 447.
- 60 M.W.G. de Bolster, I.E. Kortram and W.L. Grocneveld, J. Inorg. Nucl. Chem., 34 (1972) 575.
- 61 A.M. Brodie, S.H. Hunter, G.A. Rodley and C.J. Wilkins, Inorg. Chim. Acta, 2 (1968) 195.
- 62 S.H. Hunter, G.A. Rodley and K. Emerson, Chem. Commun., (1969) 1398.
- 63 N.M. Karayannis, J.V. Minkievicz, L.L. Pytlewski and M.M. Labes, *Inorg. Chim. Acta.* 3 (1969)
- 64 N.M. Karayannis, S.D. Sonsino, C.M. Mikulski, M.J. Strocko, L.L. Pytlewski and M.M. Labes, Inorg. Chim. Acta, 4 (1970) 141.

- 65 W. Byers, A.B.P. Lever and R.V. Parish, Inorg. Chem., 7 (1968) 1835.
- 66 B.A. Coyle and J.A. Ibers, Inorg. Chem., 9 (1970) 767.
- 67 N.M. Karayannis, C.M. Mikulski, M.J. Strocko, L.L. Pytlewski and M.M. Labes, J. Inorg. Nucl. Chem., 33 (1971) 3185, and references therein.
- 68 N.M. Karayannis, L.L. Pytlewski and M.M. Labes, Inorg. Chim. Acta, 3 (1969) 415.
- 69 P.M. Enriquez, S.S. Zumdahl and L. Farshey, Chem. Commun., (1970) 1527.
- 70 D.W. Herlocker, Inorg. Chim. Acta, 6 (1972) 211.
- 71 N.M. Karayannis, C. Owens, L.L. Pytlewski and M.M. Labes, J. Inorg. Nucl. Chem., 31 (1969) 2767.
- 72 N.M. Karayannis, E.E. Bradshaw, L.L. Pytlewski and M.M. Labes, J. Inorg. Nucl. Chem., 32 (1970) 1079.
- 73 N.M. Karayannis, C.M. Mikulski, M.J. Strocko, L.L. Pytlewski and M.M. Labes, *Inorg. Chim. Acta*, 4 (1970) 557.
- 74 V.L. Goedken, L.M. Vallarino and J.V. Quagliano, J. Amer. Chem. Soc., 92 (1970) 303.
- 75 F.K. Ross and G.D. Stucky, J. Amer. Chem. Soc., 92 (1970) 4538.
- 76 V.L. Goedken, J.V. Quagliano and L.M. Vallarino, Inorg. Chem., 8 (1969) 2331.
- 77 F.K. Ross and G.D. Stucky, Inorg. Chem., 8 (1969) 2734.
- 78 L.M. Vallarino, V.L. Goedken and J.V. Quagliano, Inorg. Chem., 11 (1972) 1466.
- 79 F. Basolo, Coord, Chem. Rev., 3 (1968) 213.
- 80 C.M. Harris, R.S. Nyholm and D.J. Phillips, J. Chem. Soc., London, (1960) 4379.
- L. Di Sipio, L. Sindellari, E. Tondello, G. De Michelis and L. Olean, Coord. Chem. Rev., 2 (1967) 129.
- 82 M.A. Bennett and J.D. Wild, J. Chem. Soc. Λ. (1971) 536.
- 83 M.A. Bennett and J.D. Wild, J. Chem. Soc. A, (1971) 545.
- 84 A. Sacco and F. Gorieri, Gazz. Chim. Ital., 93 (1963) 687.
- 85 W.D. Horrocks, Jr., G.R. Van Hecke and D.D. Hall, Inorg. Chem., 6 (1967) 694.
- 85a J.K. Stalick, D.W. Meek, B.Y.K. Ho and J.J. Zuckerman, J. Chem. Soc. Chem. Commun., (1972) 630.
- 85b J.K. Stalick, P.W.R. Corfield and D.W. Meek, J. Amer. Chem. Soc., 94 (1972) 6194.
- 86 R. Morassi and A. Dei, Inorg. Chim. Acta, 6 (1972) 314.
- 86a J.C. Cloyd, Jr. and D.W. Meek, Inorg. Chim. Acta, 6 (1972) 480.
- 87 E.C. Alyea and D.W. Meek, Inorg. Chem., 11 (1972) 1029.
- 88 K. Issleib and H. Weichmann, Z. Anorg. Allg. Chem., 362 (1968) 33.
- 89 B. Corain, M. Bressan, P. Rigo and A. Turco, Chem. Commun., (1968) 509.
- 90 P. Rigo, B. Corain and A. Turco, Inorg. Chem., 7 (1968) 1623.
- 91 C.A. McAuliffe and D.W. Meek, Inorg. Chem., 8 (1969) 904.
- 92 G. Dyer and D.W. Meek, J. Amer. Chem. Soc., 89 (1967) 3983.
- 93 T.D. DuBois and D.W. Meek, Inorg. Chem., 6 (1967) 1395.
- 94 M.O. Workman, G. Dyer and D.W. Meck, Inorg. Chem., 6 (1967) 1543.
- 95 J.F. Sieckhaus and T. Layloff, Inorg. Chem., 6 (1967) 2185.
- 96 B.R. Cook, C.A. McAuliffe and D.W. Meek, Inorg. Chem., 10 (1971) 2676.
- 97 R.S. Nyholm, J. Chem. Soc., London, (1950) 2061.
- 98 B. Bosnich, R. Bramley, R.S. Nyholm and M.L. Tobe, J. Amer. Chem. Soc., 88 (1966) 3926.
- 99 B. Bosnich, R.S. Nyholm, P.J. Pauling and M.L. Tobe, J. Amer. Chem. Soc., 90 (1968) 4741.
- 100 M.R. Churchill and T.A. O'Brien, Chem. Commun., (1968) 246.
- 101 M.R. Churchill and T.A. O'Brien, J. Chem. Soc. A, (1970) 206.
- 102 C. Furlani and M.L. Luciani, Inorg. Chem., 7 (1968) 1586.
- 103 M. Bonamico, G. Dessy and V. Fares, Chem. Commun., (1969) 324.
- 104 M. Bonamico, G. Dessy and V. Fares, Chem. Commun., (1969) 1106.
- 105 P.R.H. Alderman, P.G. Owston and J.M. Rowe, J. Chem. Soc. A. (1962) 668.
- 106 E. Uhlig and M. Schäfer, Z. Anorg. Allg. Chem., 359 (1968) 67.
- 107 E.W. Ainscough and L.K. Peterson, Inorg. Chem., 9 (1970) 2699.
- 108 J.J. Bishop and A. Davison, Inorg. Chem., 10 (1971) 832.
- 109 C.G. Pierpont and R. Eisenberg, Inorg. Chem., 11 (1972) 828.

- 110 J.F. White and M.F. Farona, Inorg. Chem., 10 (1971) 1080.
- 111 K.M. Erck and B.B. Wayland, Inorg. Chem., 11 (1972) 1141.
- 111a E. Frasson, C. Panattoni and L. Sacconi, J. Phys. Chem., 63 (1959) 1908.
- 111b J. Ferguson, J. Chem. Phys., 34 (1961) 611.
- 111c L. Sacconi, P. Paoletti and R. Cini, J. Inorg. Nucl. Chem., 8 (1958) 492; J. Amer. Chem. Soc., 80 (1958) 3583.
- 112 L. Sacconi, M. Ciampolini and G.P. Speroni, J. Amer. Chem. Soc., 87 (1965) 3102.
- 113 P.L. Orioli, M. Di Vaira and L. Sacconi, Chem. Commun., (1965) 103.
- 114 P.L. Orioli, M. Di Vaira and L. Sacconi, Inorg. Chem., 5 (1966) 400.
- 115 L. Sacconi, P. Paoletti and M. Ciampolini, J. Amer. Chem. Soc., 85 (1963) 411.
- 116 L. Sacconi, Essays Coord. Chem., 9 (1964) 148.
- 117 R.H. Holm and M.J. O'Connor, Progr. Inorg. Chem., 14 (1971) 241.
- 118 L. Sacconi, P.L. Orioli and M. Di Vaira, Chem. Commun., (1967) 849.
- 119 S. Yamada and H. Nishikawa, Bull. Chem. Soc. Jap., 38 (1965) 683.
- 120 S. Yamada and E. Yoshida, Bull. Chem. Soc. Jap., 40 (1967) 1298.
- 121 P.A. Bone, E.D. McKenzie and K. Rowan, Chem. Commun., (1970) 420.
- 122 S. Yamada and E. Yoshida, Bull, Chem. Soc. Jap., 40 (1967) 1854.
- 123 S. Utsuno, J. Inorg. Nucl. Chem., 32 (1970) 183.
- 124 S. Utsuno, J. Inorg. Nucl. Chem., 32 (1970) 1631.
- 125 H.S. Preston and C.H.L. Kennard, Chem. Commun., (1968) 819.
- 126 H.S. Preston and C.H.L. Kennard, J. Chem. Soc. A, (1969) 2682.
- 127 E. Uhlig, R. Krähmer and H. Wolf, Z. Anorg. Allg. Chem., 361 (1968) 157.
- 128 P.S.K. Chia and S.E. Livingstone, *Inorg. Chim. Acta*, 2 (1968) 427.
- 129 R.E. Christopher, I.R. Gordon and L.M. Venanzi, J. Chem. Soc. A. (1968) 205.
- 130 M. Kecton and A.B.P. Lever, Inorg. Chem., 10 (1971) 47.
- 131 J. Chatalambous, M.J. Frazer and F.B. Taylot, J. Chem. Soc. A. (1971) 602.
- 132 M. Mathew and G.J. Palenik, J. Amer. Chem. Soc., 91 (1969) 4923.
- 133 P.S. Shetty, R.E. Ballard and Q. Fernando, Chem. Commun., (1969) 717.
- 134 P.S. Shetty and Q. Fernando, J. Amer. Chem. Soc., 92 (1970) 3964.
- 135 A. Sgamellotti, C. Furlani and F. Magrini, J. Inorg. Nucl. Chem., 30 (1968) 2655.
- 136 N. Yoon, M.J. Incorvia and J.I. Zink, J. Chem. Soc. Chem. Commun., (1972) 499.
- 137 J.R. Angus, G.M. Woltermann, W.R. Vincent and J.R. Wasson, J. Inorg. Nucl. Chem., 33 (1971) 3041.
- 138 J.R. Angus, G.M. Woltermann and J.R. Wasson, J. Inorg. Nucl. Chem., 33 (1971) 3967.
- 139 J.R. Angus and J.R. Wasson, J. Coord. Chem., 1 (1971) 309.
- 139a H.E. Francis, G.L. Tincher, W.F. Wagner, J.R. Wasson and G.M. Woltermann, Inorg. Chem., 10 (1971) 2620.
- 140 R.L. Carlin, J.S. Dubnoff and W.T. Huntress, Proc. Chem. Soc., (1964) 228.
- 141 R.L. Carlin and D.B. Losce, Inorg. Chem., 9 (1970) 2087.
- 142 W.V. Dahlhoff, T.R. Dick, G.H. Ford and S.M. Nelson, J. Inorg. Nucl. Chem., 33 (1971) 1799.
- 143 G.A. Barclay, R.S. Nyholm and R.V. Parish, J. Chem. Soc., London, (1961) 4433.
- 144 G.A. Mair, H.M. Powell and D.E. Henn, Proc. Chem. Soc., (1960) 415.
- 145 R.G. Cunninghame, R.S. Nyholm and M.L. Tobe, J. Chem. Soc. Dalton, (1972) 229.
- 146 L. Sacconi, I. Bertini and F. Mani, Inorg. Chem., 7 (1968) 1417.
- 146a C.A. McAuliffe, M.O. Workman and D.W. Meck, J. Coord. Chem., 2 (1972) 137,
- 146b G.J. Palenik and D.F. Rendle, unpublished results.
- 147 L. Sacconi and R. Morassi, J. Chem. Soc. A, (1968) 2997.
- 148 G. Degischer and G. Schwarzenbach, Helv. Chim. Acta, 49 (1966) 1927.
- 149 P.L. Orioli and L. Sacconi, Chem. Commun., (1968) 1310.
- 150 P.L. Orioli and C. Ghilardi, J. Chem. Soc. A, (1970) 1511.
- 151 L. Sacconi, G.P. Speroni and R. Morassi, Inorg. Chem., 7 (1968) 1521.
- 151a P.G. Eller and D.W. Meek, Inorg. Chem., 11 (1972) 2518.
- 152 R.B. King, P.N. Kapoor and R.N. Kapoor, Inorg. Chem., 10 (1971) 1841.

- 152a J.C. Cloyd, Jr. and D.W. Meek, Inorg. Chim. Acta, 6 (1972) 607.
- 153 D.W. Meek and J.A. Ibers, Inorg. Chem., 8 (1969) 1915.
- 154 R. Davis and J.E. Fergusson, Inorg. Chim. Acta, 4 (1970) 23.
- 155 J. Ellermann and W.H. Gruber, Z. Anorg. Alig. Chem., 364 (1970) 55.
- 156 C.A. McAuliffe, M.O. Workman and D.W. Meek. Inorg. Nucl. Chem., Lett., 5 (1969) 147.
- 157 G.A. Barclay, E.M. McPartlin and N.C. Stephenson, Inorg. Nucl. Chem. Lett., 3 (1967) 397.
- 158 G.A. Barclay, E.M. McPartlin and N.C. Stephenson, Aust. J. Chem., 21 (1968) 2669.
- 159 G.A. Barclay, E.M. McPartlin and N.C. Stephenson, Acta Crystallogr., Sect. B, 25 (1969) 1262.
- 160 D.J. Baker, D.C. Goodall and D.S. Moss, Chem. Commun., (1969) 325.
- 161 W.S.J. Kelly, G.H. Ford and S.M. Nelson, J. Chem. Soc. A, (1971) 388.
- 162 W.V. Dahlhoff and S.M. Nelson, J. Chem. Soc. A, (1971) 2184.
- 163 L. Sacconi, M. Ciampolini and G.P. Speroni, Inorg. Chem., 4 (1965) 1116.
- 164 L. Sacconi, P. Nannelli, N. Nardi and U. Campigli, Inorg. Chem., 4 (1965) 943.
- 165 L. Sacconi, P.L. Orioli and M. Di Vaira, J. Amer. Chem. Soc., 87 (1965) 2059.
- 166 P.L. Orioli, M. Di Vaira and L. Sacconi, J. Amer. Chem. Soc., 88 (1966) 4383.
- 167 E. Uhlig and B. Machelett, Z. Chem., 9 (1969) 155.
- 168 P. Bamfield, J. Chem. Soc. A, (1968) 81.
- 169 M. Ciampolini and G.P. Speroni, Inorg. Chem., 5 (1966) 45.
- 170 M. Di Vaira and P.L. Orioli, Chem. Commun., (1965) 590.
- 171 M. Di Vaira and P.L. Orioli, Inorg. Chem., 8 (1969) 2729.
- 172 Z. Dori and H.B. Gray, Inorg. Chem., 7 (1968) 889.
- 173 J.L. Burmeister, T.P. O'Sullivan and K.A. Johnson, Inorg. Chem., 10 (1971) 1803.
- 174 Z. Dori, R. Eisenberg and H.B. Gray, Inorg. Chem., 6 (1967) 483.
- 175 Z. Dori and H.B. Gray, J. Amer. Chem. Soc., 88 (1966) 1394.
- 176 M. Ciampolini and N. Nardi, Inorg. Chem., 6 (1967) 445.
- 177 M. Ciampolini and J. Gelsomini, Inorg. Chem., 6 (1967) 1821.
- 178 L. Sacconi, I. Bertini and R. Morassi, Inorg. Chem., 6 (1967) 1548.
- 179 L. Sacconi and G.P. Speroni, Inorg. Chem., 7 (1968) 295.
- 180 L. Sacconi and I. Bertini, Inorg. Chem., 7 (1968) 1178.
- 181 P.L. Orioli and M. Di Vaira, J. Chem. Soc. A, (1968) 2079.
- 182 I. Bertini and F. Mani, Inorg. Chem., 9 (1970) 248.
- 183 F. Lions, I.G. Dance and J. Lewis, J. Chem. Soc. A, (1967) 565.
- 184 I.G. Dance, M. Gerloch, J. Lewis, F.S. Stephens and F. Lions, Nature (London), 210 (1966) 298.
- 185 M. Gerloch, J. Chem. Soc., London, (1966) 1317.
- 186 G. Zakrzewski and L. Sacconi, Inorg. Chem., 7 (1968) 1034.
- 187 L. Sacconi, R. Morassi and S. Midollini, J. Chem, Soc. A, (1968) 1510.
- 188 J.S. Judge, W.M. Reiff, G.M. Intille, P. Ballway and W.A. Baker, Jr., J. Inorg. Nucl. Chem., 29 (1967) 1711.
- 189 J.S. Judge and W.A. Baker, Jr., Inorg. Chim. Acta, 1 (1967) 239.
- 190 C.M. Harris, T.N. Lockyer and N.C. Stephenson, Aust. J. Chem., 19 (1966) 1741.
- 191 C.M. Harris, T.N. Lockyer, R.L. Martin, H.R.H. Patil, E. Sinn and I.M. Stewart, Aust. J. Chem., 22 (1969) 2105.
- 192 E. Goldschmied and N.C. Stephenson, Acta Crystallogr., Sect. B, 26 (1970) 1867.
- 193 D.P. Madden and S.M. Nelson, J. Chem. Soc. A, (1968) 2342.
- 194 S.M. Nelson and J. Rodgers, Inorg. Chem., 6 (1967) 1390.
- 195 P.S.K. Chia and S.E. Livingstone, Aust. J. Chem., 22 (1969) 1613.
- 196 M.M. Da Mota, J. Rodgers and S.M. Nelson, J. Chem. Soc. A, (1969) 2036.
- 197 J. Rodgers and R.A. Jacobson, J. Chem. Soc. A, (1970) 1826.
- 198 P. Bamfield, R. Price and R.G.J. Miller, J. Chem. Soc. A. (1969) 1447.
- 199 S.E. Livingstone and J.D. Nolan, Aust. J. Chem., 22 (1969) 1817.
- 200 I. Bertini, D.L. Johnston and W. DeW. Horrocks, Jr., Inorg. Chim. Acta, 4 (1970) 79.
- 201 N.F. Curtis and H.K.J. Powell, J. Chem. Soc. A. (1968) 3069.
- 202 1. Bertini, D.L. Johnston and W. DeW. Horrocks, Jr., Inorg. Chem., 9 (1970) 698.

- 203 H.A. Goodwin and R.N. Sylva, Aust. J. Chem., 21 (1968) 2881.
- 204 M.R. Litzow, L.F. Power and A.M. Tait, J. Chem. Soc. A. (1970) 2907.
- 205 R. Morassi and L. Sacconi, J. Amer. Chem. Soc., 92 (1970) 5241.
- 206 R. Morassi, F. Mani and L. Sacconi, Inorg. Chem., 12 (1973) 1246.
- 207 A. Bianchi, C. Calabresi, C.A. Ghilardi, P.L. Orioli and L. Sacconi, J. Chem. Soc. Dalton, (1973) 1383.
- 208 C.A. Ghilardi and A. Bianchi Orlandini, J. Chem. Soc. Dalton, (1972) 1698.
- 209 S.E. Livingstone and J.D. Nolan, J. Chem. Soc. Dalton, (1972) 218.
- 210 B. Sen and D.A. Johnson, J. Inorg. Nucl. Chem., 34 (1972) 609.
- 211 M. Akbar Ali, S.E. Livingstone and D.J. Phillips, Inorg. Chim. Acta, 6 (1972) 39.
- 212 D. StC. Black and I.A. McLean, Aust. J. Chem., 24 (1971) 1377.
- 213 L.M. Venanzi, Angew. Chem., Int. Ed. Engl., 3 (1964) 453.
- 214 M.T. Halfpenny, J.C. Hartley and L.M. Venanzi, J. Chem. Soc. A, (1967) 627.
- 215 J.C. Hartley, D.G.E. Kerfoot and L.M. Venanzi, Inorg. Chim. Acta, 1 (1967) 145.
- 216 T.L. Biundeii, H.M. Poweli and L.M. Venanzi, Chem. Commun., (1967) 763.
- 217 G. Dyer, J.C. Hartley and L.M. Venanzi, J. Chem. Soc., London, (1965) 1293.
- 218 G.S. Benner and D.W. Meek, Inorg. Chem., 6 (1967) 1399.
- 219 O.St.C. Headley, R.S. Nyholm, C.A. McAuliffe, L. Sindellari, M.L. Tobe and L.M. Venanzi, Inorg. Chim, Acta, 4 (1970) 93.
- 220 R.B. King, R.N. Kapoor, M.S. Saran and P.N. Kapoor, Inorg. Chem., 10 (1971) 1851.
- 221 G.S. Benner, W.E. Hatfield and D.W. Meek, Inorg. Chem., 3 (1964) 1544.
- 222 D.L. Stevenson and L.F. Dahl, J. Amer. Chem. Soc., 89 (1967) 3424.
- 223 G. Dyer and D.W. Meek, Inorg. Chem., 4 (1965) 1398.
- 224 L.P. Haugen and R. Eisenberg, Inorg. Chem., 8 (1969) 1072.
- 225 G. Dyer and D.W. Meek, Inorg. Chem., 6 (1967) 149.
- 226 L. Sacconi and I. Bertini, J. Amer. Chem. Soc., 90 (1968) 5443.
- 227 P.L. Orioli and L. Sacconi, Chem. Commun., (1969) 1012.
- 228 C. Mealli, P.L. Orioli and L. Sacconi, J. Chem. Soc. A, (1971) 2691.
- 229 L. Sacconi and I. Bertini, J. Amer. Chem. Soc., 89 (1967) 2235.
- 230 P. Dapporto and L. Sacconi, Chem. Commun., (1969) 1091.
- 231 P. Dapporto and L. Sacconi, J. Chem. Soc. A, (1970) 1804.
- 232 L. Sacconi and R. Morassi, Inorg. Nucl. Chem. Lett., 4 (1968) 449.
- 233 L. Sacconi and R. Morassi, J. Chem. Soc. A, (1969) 2904.
- 234 A. Bianchi, P. Dapporto, G. Fallani, C.A. Ghilardi and L. Sacconi, J. Chem. Soc. Dalton, (1973)
- 235 R. Morassi and L. Sacconi, J. Chem. Soc. A, (1971) 492.
- 236 P. Dapporto, R. Morassi and L. Sacconi, J. Chem. Soc. A, (1970) 1298.
- 237 A. Bianchi and C.A. Ghilardi, J. Chem. Soc. A. (1971) 1096.
- 238 R. Morassi and L. Sacconi, J. Chem. Soc. A. (1971) 1487.
- 239 M. Mathew, G.J. Palenik, G. Dyer and D.W. Meek, J. Chem. Soc. Chem. Commun., (1972) 379.
- 240 J.W. Dawson and L.M. Venanzi, J. Amer. Chem. Soc., 90 (1968) 7229.
- 241 B.R. Higginson, C.A. McAuliffe and L.M. Venanzi, Inorg. Chim. Acta, 5 (1971) 37.
- 242 C.A. McAuliffe and D.W. Meek, Inorg. Chim. Acta, 5 (1971) 270.
- 243 T.D. DuBois and D.W. Meek, Inorg. Chem., 8 (1969) 146.
- 244 L. Sacconi and A. Dei, J. Coord. Chem., 1 (1971) 229.
- 245 A. Bianchi, C.A. Ghilardi, C. Mealli and L. Sacconi, J. Chem. Soc. Chem. Commun., (1972) 651.
- 246 T.D. DuBois, Inorg. Chem., 11 (1972) 718.
- 247 A. Earnshaw, P.C. Hewlett, E.A. King and L.F. Larkworthy, J. Chem. Soc. A. (1968) 241, and references therein.
- 248 S. Brückner, M. Calligaris, G. Nardin and L. Randaccio, Acta Crystallogr., Sect. B, 25 (1969) 1671.
- 249 R. De Iasi, S.L. Holt and B. Post, Inorg. Chem., 10 (1971) 1498.
- 250 M. Calligaris, D. Minichelli, G. Nardin and L. Randaccio, J. Chem. Soc. A, (1970) 2411.
- 251 E.K. Barefield and D.H. Busch, Inorg. Chem., 10 (1971) 1216.
- 252 K.M. Long and D.H. Busch, Inorg. Chem., 9 (1970) 505.

- 253 J.L. Karn and D.H. Busch, Nature (London), 211 (1966) 160.
- 254 E.B. Fleischer and S.W. Hawkinson, Inorg. Chem., 7 (1968) 2312.
- 255 J.L. Karn and D.H. Busch, Inorg. Chem., 8 (1969) 1149.
- 256 R. Dewar and E.B. Fleischer, Nature (London), 222 (1969) 372.
- 257 W. Rosen and D.H. Busch, J. Amer. Chem. Soc., 91 (1969) 4694.
- 258 M. Ciampolini and N. Nardi, Inorg. Chem., 5 (1966) 1150.
- 259 M. Di Vaira and P.L. Orioli, Acta Crystallogr., Sect. B. 24 (1968) 1269.
- 260 M. Ciampolini and N. Nardi, Inorg. Chem., 5 (1966) 41.
- 261 M. Di Vaira and P.L. Orioli, Inorg. Chem., 6 (1967) 955.
- 262 M. Di Vaira and P.L. Orioli, Acta Crystallogr., Sect. B, 24 (1968) 595.
- 263 I. Bertini, M. Ciampolini, P. Dapporto and P. Gatteschi, Inorg. Chem., 11 (1972) 2254.
- 264 M. Ciampolini and P. Paoletti, Inorg. Chem., 6 (1967) 1261.
- 265 A. Dei and R. Morassi, J. Chem. Soc. A, (1971) 2024.
- 266 L.V. interrante and J.L. Shafer, Inorg. Nucl. Chem. Lett., 4 (1968) 411.
- 267 J.L. Shafer and K.N. Raymond, Inorg. Chem., 10 (1971) 1799.
- 268 P. Dapporto and G. Failani, J. Chem. Soc. Dalton, (1972) 1498.
- 269 I. Bertini, P. Dapporto, G. Fallani and L. Sacconi, Inorg. Chem., 10 (1971) 1703.
- 270 M. Di Vaira and A. Bianchi Orlandini, J. Chem. Soc. Dalton, (1972) 1704.
- 271 M. Di Vaira and L. Sacconi, Chem. Commun., (1969) 10.
- 272 M. Di Vaira, J. Chem. Soc. A. (1971) 148.
- 273 L. Sacconi and R. Morassi, J. Chem. Soc. A, (1970) 575.
- 274 P. Dapporto, M. Di Vajra and L. Sacconi, Chem. Commun., (1969) 153.
- 275 P. Dapporto and M. Di Vaira, J. Chem. Soc. A. (1971) 1891.
- 276 P. Dapporto and L. Sacconi, Chem. Commun., (1969) 329.
- P. Dapporto and L. Sacconi, J. Chem. Soc. A, (1970) 618. 277
- 278 L. Sacconi, M. Di Vaira and A. Bianchi, J. Amer. Chem. Soc., 92 (1970) 4465.
- 279 P. Dapporto, G. Fallani and L. Sacconi, J. Coord. Chem., 1 (1971) 269.
- 280 M. Ciampolini, J. Gelsomini and N. Nardi, Inorg. Chim. Acta, 2 (1968) 343.
- 281 G. Fallani, R. Morassi, L. Sacconi and F. Zanobini, Abstr. 6th. Nat. Meeting Ital. Assoc. Inorg. Chenz, 1973, B6 and unpublished results.
- 282 J.I. Legg, D.O. Nelson, D.L. Smith and M.L. Larson, J. Amer. Chem. Soc., 90 (1968) 5030.
- 283 D.F. Averill, J.I. Legg and D.L. Smith, Inorg. Chem., 11 (1972) 2344.
- 284 D.O. Nielson, M.L. Larsen, R.D. Willett and J.I. Legg, J. Amer. Chem. Soc., 93 (1971) 5079.
- 285 N.A. Bailey, J.G. Gibson and E.D. McKenzie, Chem. Commun., (1969) 741.
- 286 I.G. Gibson and E.D. McKenzie, J. Chem. Soc. A, (1971) 1029.
- 287 P.H. Merrell, V.L. Goedken, D.H. Busch and J.A. Stone, J. Amer. Chem. Soc., 92 (1970) 7590.

W. Mazurek, A.T. Phillip, B.F. Hoskins and F.D. Whillans, Chem. Commun., (1970) 184.

- 287a V.L. Goedken, P.H. Merrell and D.H. Busch, J. Amer. Chem. Soc., 94 (1972) 3397.
- 287b V.L. Goedken and D.H. Busch, J. Amer. Chem. Soc., 94 (1972) 7355.
- 288 G.A. Kalligeros and E.L. Blinn, Inorg. Chem., 11 (1972) 1145.
- 289 G.M. Mockler, G.W. Chaffey, E. Sinn and H. Wong, Inorg. Chem., 11 (1972) 1308.
- 290 F. Lions, Rev. Pure Appl. Chem., 19 (1969) 177.
- 29 I L.T. Taylor and W.M. Coleman, J. Amer. Chem. Soc., 92 (1970) 1449.
- 292 W.M. Coleman and L.T. Taylor, J. Inorg. Nucl. Chem., 33 (1971) 3049.
- 293 V. Katovic, L.T. Taylor and D.H. Busch, J. Amer. Chem. Soc., 91 (1969) 2122.
- 294 V. Katovic, L.T. Taylor and D.H. Busch, Inorg. Chem., 10 (1971) 458.
- 295 L. Sacconi and I. Bertini, J.Amer. Chem. Soc., 88 (1966) 5180.
- 296 P.L. Orioli, M. Di Vaira and L. Sacconi, Chem. Commun., (1966) 300.
- 297 M. Di Vaira, P.L. Orioli and L. Sacconi, Inorg. Chem. 10 (1971) 553,
- 298 M. Seieborg, S.L. Holt and B. Post, Inorg. Chem., 10 (1971) 1501.
- 298a G.N. La Mar and L. Sacconi, J. Amer. Chem. Soc., 89 (1967) 2282.
- 299 I. Bertini, L. Sacconi and G.P. Speroni, Inorg. Chem., 11 (1972) 1323.
- 300 A.T. Phillip, W. Mazurek and A.T. Casey, Aust. J. Chem., 24 (1971) 501. 301
- 302 D. StC. Black and I.A. McLean, Aust. J. Chem., 24 (1971) 1391.

- 303 S.M. Nelson and W.S.J. Kelly, Chem. Commun., (1969) 94.
- 304 S.M. Nelson and W.S.J. Kelly, Chem. Commun., (1968) 436.
- 305 L.G. Marzilli, P.A. Marzilli and J. Halpern, J. Am., Chem. Soc., 93 (1971) 1374.
- 306 L.G. Marzilli and P.A. Marzilli, Inorg. Chem., 11 (1972) 457.
- 307 E.K. Barefield, D.H. Busch and S.M. Nelson, Quart. Rev., Chem. Soc., 22 (1968) 457.
- 308 L. Sacconi, Pure Appl. Chem., 27 (1971) 161, and references therein.
- 309 M. Di Vaira, personal communication.
- 310 M. Ciampolini, Inorg. Chem., 5 (1966) 35.
- 311 M. Ciampolini, N. Nardi and G.P. Speroni, Coord. Chem. Rev., 1 (1966) 222.
- 312 . M. Ciampolini and I. Bertini, J. Chem. Soc. A, (1968) 2241.
- 313 M.J. Norgett, J.H.M. Thornley and L.M. Venanzi, J. Chem. Soc. A, (1967) 540; Coord. Chem. Rev., 2 (1967) 99.
- 314 M.J. Norgett and L.M. Venanzi, Inorg. Chim. Acta, 2 (1968) 107.
- 315 J.S. Wood, Inorg. Chem., 7 (1968) 852.
- 316 S.T. Spees, Jr., J.R. Perumareddi and A.W. Adamson, J. Phys. Chem., 72 (1968) 1822.
- 317 J.R. Preer and H.B. Gray, J. Amer. Chem. Soc., 92 (1970) 7306.
- 318 J.W. Dawson, L.M. Venanzi, J.R. Preer, J.E. Hix and H.B. Gray, J. Amer. Chem. Soc., 93 (1971) 778.
- 319 J.R. Ferraro, D.W. Meek, E.C. Siwiec and A. Quattrochi, J. Amer. Chem. Soc., 93 (1971) 3862.
- 320 J.R. Ferraro and K. Nakamoto, Inorg. Chem., 11 (1972) 2290.
- 321 M. Gerloch, J. Kohl, J. Lewis and W. Urland, J. Chem. Soc. A, (1970) 3269.
- 322 D. Gatteschi and I. Bertini, Abstr. Nat. Meet. Ital. Assoc. Inorg. Chem., 3rd, 1970, C 34, and unpublished results.
- 323 J.S. Wood and P.T. Greene, Inorg. Chem., 8 (1969) 491.
- 324 I. Bertini and D. Gatteschi, J. Coord, Chem., 1 (1971) 285, and unpublished results.
- 325 M. Gerloch, J. Kohl, J. Lewis and W. Utland, J. Chem. Soc. A, (1970) 3283.
- 326 I. Bertini, M. Ciampolini and D. Gatteschi, Inorg. Chem., 12 (1973) 693.
- 327 I. Bertini, M. Ciampolini and L. Sacconi, J. Coord. Chem., 1 (1971) 73.
- 328 J.S. Wood, J. Chem. Soc. A, (1969) 1582.
- 329 P.M. Enriquez and S.S. Zumdahl, Inorg. Chem., 12 (1973) 2475.
- 330 J.K. Stalick, P.W.R. Corfield and D.W. Meek, Inorg. Chem., 12 (1973) 1668.
- 331 M. Mathew, G.J. Palenik and G.R. Clark, Inorg. Chem., 12 (1973) 446.
- 332 M. Di Vaira and A. Bianchi Orlandini, Inorg. Chem., 12 (1973) 1292.
- 333 M. Nemiroff and S.L. Holt, Inorg. Chem., 12 (1973) 2032.